第六期:创造发明家

张旭朏/译

Dr. Allbritton [0:01] 

其中有一些有趣的味道使我无从考究。 它的味道像胡椒薄荷味的薯片或某种薄荷味的薯片。

Peter [0:14] 

好了,您现在可以摘下眼罩了。您手中的其实是椰子片。 我想这(个表达)会比较直接,因为您实验室中的一项工作是在芯片上做一个肠道,所以用薯片来形容。 我想表达的另一层含义是,如果您看着这切成两半的椰子,是不是很肠道呢!

Peter [0:45]

嗨,大家好!我是本期The Gastronauts 播客的主持人Peter。 在Gastronauts,我们将致力于理解人体的(内在)联系,尤其是肠道与大脑的对话方式。我们希望更深入的研究优秀科学家们及其工作背后的灵感和动机,并希望通过了解科学背后的科学家们来了解不同科学家的想法以及如何解决复杂的问题。 那么,请跟我一同走进本期播客,探索我们的内部空间。

今天,我们有幸邀请到北卡罗来纳州立大学(UNC)凯南化学特聘教授Nancy Allbritton博士,现任UNC教堂山生物医学工程系主任。关于Allbritton博士的一些背景是:她曾在路易斯安那州立大学(LSU)学习物理学,(之后)获得约翰·霍普金斯大学医学博士学位,并在MIT的Herman Eisen博士实验室获得医学物理学博士学位。此后,她在斯坦福大学的Luber Stryer博士实验室进行了博士后研究,在那里她研究了辅助信使信号(通路)。她获得了多项专利,并且是四家公司的科学创始人。我真的很想了解您从研究到建立这些公司的想法。但我(还是)想先从您的研究工作问起。从您的网页上,我发现了三项主要工作:单细胞酶测定,通过微筏分析和分选细胞的新方法以及这些在芯片上进行的器官实验-这些是您实验室当前的重点,您能否告诉我们更多有关您实验室中的工作呢?

Dr. Allbritton [2:43] 

当然可以。这些是实验室的三个主要领域。从许多方面来看,它们似乎都是不连通的区域,但是我的实验室为(研究)生物的小物件和小工具构建了设备,这些设备非常小,非常适合小规模样品处理和单细胞测定。那么,我们实验室开始使用的第一种技术是,可以并行测量单个细胞中的酶活性。你要知道,基因组测序对科学产生了巨大影响。尽管所有这些事情都很棒,但在大多数时候,你真正想知道的是细胞中的酶促活动在信号(通路中)的作用,而不仅仅是一串成分列表。你可能知道了计算机组件的列表,也许并不知道这是一台计算机,因为使用几个零件也可以来做其他事情。所以,我们的想法是,可以开发一种从临床样本中查看人类样本并测量信号传导活性的潜在技术。这大约是实验室工作的三分之一,而实验室另外三分之一的工作是基于微阵列的分选技术。当我与各个领域的生物学家合作时提出了一种更好的细胞分选方法,进而产生了该技术的想法。因此,我们制作了一个透明的阵列,可以在其中放置细胞。它由一系列微小的元素组成。每个元素都可以按需发布。你实际上可以做的是使用任何类型的显微镜来检查阵列,然后使用这些计算机算法或一些非常简单的方法,例如变化率,再返回并释放这些细胞。因此,你只能分选100个细胞,甚至10个细胞,而不是通常用于流式细胞术所需的一百万个细胞。

Peter [4:37] 

哇!对于我们当中不太熟悉流式细胞术的人,您能告诉我们一些有关该技术及其工作原理吗?

Dr. Allbritton [4:44] 

可以。这是一项很棒的技术,它是斯坦伯格(Hanzenbergs)在很久以前开发的。 其想法是,取出已经从表面分离的细胞,再通过高速流继续流动,然后用激光对它们进行处理。

Peter [5:00] 

听起来有些不可思议。

Dr. Allbritton [5:03] 

其实是很有趣的。 随后由计算机决定一种属性,通常是荧光,然后我们将其抓取并分类,或者丢弃掉。 这是一项非常高速的分选技术,但确实存在一些实际性的挑战。 这通常需要将近一百万个细胞,设备上还有很多管道和其他区域(可能会导致)细胞的丢失或消失。 因此,如果要发现一百万个细胞或一亿个细胞中的一个,那很难。 这不是它的优点。 但是,如果想要快速地处理非常大量的细胞,这是个非常好的选择。 由于存在高速流,细胞上会承受许多机械应力。 因此,许多脆弱的细胞无法生存,从而导致很高的(细胞)死亡率。

Peter [5:59] 

就像坐过山车一样,继续(快速)前进,您和同行的其他人都(要)被撕裂了。 而后出来时(的状态)肯定不会是一样的。

Dr. Allbritton [6:08] 

确实,你会觉得这是错杂和混乱的。一项轰动一时的技术既有它的优势,也有它的劣势。那么,我们的技术设计具有恰好相反的优点和缺点:确实非常好,分选时几乎没有物理压力或作用在细胞上的力。它永远不会存储成千上万个细胞,但是它将非常有效地分选非常少的(特定)细胞。你可以很好地从100,000或50万个细胞开始测起。而这之中的每项技术(我们)都分别组建了公司。 我们最后一项工作/技术是小肠和大肠的芯片上器官或芯片上肠道系统。整个想法是尝试在微型设备上重新捕获活肠的结构和生理(特性)。它不会像小鼠或人类(器官)那样复杂,而是一个模型系统,你可以在其中严格控制所有变量。尤其是,它允许你采集人体活检样本,然后重建一个小型的小肠。很明显,我们的肠道具有相当数量的化学和气体梯度,但是目前几乎还不可能了解这些梯度如何影响分化的细胞并控制其行为,进而影响干细胞,尤其是人类的干细胞。因此,我们的系统旨在做到这一点,以获取不同的人类疾病模型,并观察它们与正常人的行为有何不同。现在使用的多数是老鼠(模型),而人类来自各个种族、性别、基因型和少数族裔,这是一个广阔的领域。但是你可以开始研究具有种群组织的不同人群的反应,然后可以在微型设备上重建许多不同的微型肠道。肠的类器官实际上是很小型的肠道。它们具有管腔和管腔周围的单层细胞。它们实际上是细胞,即死亡时分化的细胞进入内腔。随着时间的流逝,它们会打开并从本质上排出死细胞,就像在常规肠道/管道中一样,但它却是球形的。这(似乎)仍有不正确的地方,架构也不正确,分化后的细胞和干细胞还没有完全隔离,并且肠腔或内部腔几乎无法接近。虽然这是我们的突破性技术,它将为生物学家和生物医学研究人员进行一些令人惊叹的实验敞开大门,但它仍然存在很多不足。我们的目标是进入并建立一个新的层次,并创建一个像真正肠道一样可进入的具有内腔的组织。

Peter [9:27] 

因此,[类器官]将准确地涵盖所有内容。 我想这是作为年轻科学家发明的东西,而我还未曾意识到在培养皿中完成许多此类操作的局限性。 我觉得我们有能力做出与人类完全相同的器官,而事实并非如此。 从我们越来越接近于模仿体内发生的情况而不必进入体内的意义上来说,这是一个重大的进步。

Dr. Allbritton [9:57] 

是的,完全正确。现在,我们可以获得人体模型系统,并开始对人体系统进行大量筛选。 所以,你现在可以开始使用其中一些系统来筛选具有不同遗传背景的人群中的各种人并做出预测。这群人在此种浓度下使用这种药物可能确实有很好效果。 但是在具有某种基因型的人群中,我们需要将其浓度降低10倍才能使药物无毒。现在很明显,我们的细菌在我们代谢和摄取药物的过程中起着巨大的作用,并且它们可以将药物转变为有毒的化合物。 对于许多药物而言,[细菌]实际上将它们代谢为活性化合物。 因此,我们可以考虑来揭秘如何操纵肠道以降低药物的毒性和提高活性。

Peter [10:54] 

您之前提到过,实验室中的许多项目或工作都已经分解成公司。 您能否告诉我们一些有关您决定成立公司的事情呢?您成立的第一家公司是2000年的Protein Simple(公司名),对吗?

Dr. Allbritton [11:09]

是的。实际上我一开始并没有考虑要建立公司。我实在不觉得这是我在学术界需要做的事情。但是我发现,当你创建了一项技术时,如果它是一种新颖的技术,它仍然被视为高风险且不成熟,(这时)要将该技术许可给更大的公司就太冒险了。从实验室的试验台阶段到推向市场,它仍然需要大量的创新投资。那么,我发现,要将我的技术投入实践的唯一途径是我来创办以此为基础的公司。 我已经开发了这项技术,如果仅将其限于自己的实验室,那我就不能偿还纳税人的钱了。他们资助我完成了所有这些创新工作,而这些工作只会在我的实验室中生死存亡。至少在你是技术开发人员的情况下,产生具有实际影响的方法是将技术推广到市场,并让其他人使用它。令我惊讶的是,两者之间仍然存在巨大差距。公司并不会只是许可你的技术并进行开发。没错,我尝试获得了一些第一批技术的许可时就撞墙了。我才意识到,如果这些技术要进入市场并且对其他人有用,那么我要做到的一点是去找到一家公司,使其开始运营(此技术)。实际上,这非常令人兴奋,因为这是一种全新的技能,不是吗?而且,你能做好科研但不一定适合从商。 没关系,你仍然可以继续科研工作。 但这是个很棒的产品。我之所以真正享受它,是因为遇到了各种各样不同观点的人。商业界与学术界有着截然不同的前景和重点。我有点喜欢这一点。但是在这整个过程中,我还意识到自己不是商人,也不应该假装自己是商人。我的工作是帮助公司成立并致力于技术发展。所有这些公司都与其他公司建立了合作伙伴关系。我认为我职业生涯的一个特点就是总是与其他人一起工作。因此,公司总是由一群人创立,而不仅仅是我作为创始人。而且,由于从技术可行性到功能性公司的工作量很大,我们总是尽早聘请业务人员。作为一名学者,我没有那种技能,但是商人却有。他们会说方言。而且,如果我们可以作为一个高效的团队一起工作,我们将做更多的事情。

Peter [14:00] 

这听起来像是一种真正的补充技能。 您从来没有感觉到离开科学,进入风险资本行业或进入制药业的真正推动力,更使您意识到您对成为发明家的热情比对销售人员的兴趣更大。

Dr. Allbritton [14:17] 

我认为这是最酷的事情之一。 如果你去另一个实验室(的时候),看到了你的技术,而他们却不知道这是你的技术。 对我而言,技术实验室成功的最终标志是人们使用你的技术。 最近,有关Cell Microsystems,我看到一篇发表在Nature杂志的论文将这项技术用作其中的关键部分。 它只是说了Cell Microsystems,这真是很棒。

Peter [14:44]

您对年轻的发明家,新技术的开发人员,正在考虑创办公司但不确定是否适合他或她的人有什么建议吗? (这)是否正是他或她希望看到他们的实验室完美的地方呢? (对此)您有什么建议吗?

Dr. Allbritton [15:02] 

你要知道,这不一定适合每个人,这会让你兴奋吗?你是否愿意付出所有额外的努力和时间,并对此感到非常兴致勃勃呢?如果不这样做,那可能就不是你想做的,那么你就应该花时间做一些自己真正感兴趣的事情。我想说的另一件事是,成立一家公司确实很辛苦,有时需要做很多工作。你只需要继续努力并保持动力即可。这就像是一名科学家:95%的实验都失败了,您必须有前进的动力并不断努力。同样,创办公司也是如此。人们只会经常告诉你,你需要做更多的事情,或者为什么你无法进行任何投资,等等。而你只是不断努力前进,并且必须相信自己并受到激励。我认为这些是(其中的)秘密。我想对那些正在做自己喜欢的事情的人说,无论你做什么工作,都会遭受失败和失望,(但)如果你保持这种兴致并充满信心,那么你便能不断进步。

Peter [16:09]

是的,如此看来,您确实敦促自己不仅仅局限在研究者之列。我在浏览您以前的许多工作时(发现)您最近在2016年和2017年获得了贝克曼年轻钙质信号研究者奖,您被授予发明家奖。 从早期的开发者到发明家,您是否已经转变了这种看法呢? 您是否一直觉得我只是Nancy Allbritton博士,我是发明家,还是会有这种转变呢?

Dr. Allbritton [16:42] 

是的,当我还是个孩子的时候,我曾经用自己的汽车进行改造性工作。那个时候,你可以自己改造汽车,调整化油器和所有其他东西。我一直喜欢建造和设计,例如,我曾经自己建造了兔子厨具。而且我总是喜欢修改、创造并改进。所以,我一直对构建工具兴趣颇深。而且一直在构建解决生物学问题的工具。我想这是一个标志。甚至当我开始做教授时,我还在医学院。但是即使在那个时候,我的实验室也在建立解决生物学问题的技术和工具。而且我一直感觉随着时间的推移自己会变得越来越聪明。因为随着时间的推移,相对于试图找出正确的生物学问题,我开始将更多的精力集中在建立技术人员和与他人合作而不是(单纯)构建技术上,然后尝试解决(这些)生物学问题。因为我找到了那个人,我不可能在所有事情上都是专家。我很擅长于了解所有的工程、分析化学和物理学,但是要跟上快速发展的生物学领域的步伐仍是一项艰巨的任务。因此,我决定在[职业生涯]前进的过程中,认识自己擅长的领域以及不太擅长的领域,更加专注于技术开发,是因为我对此更擅长。

Peter [18:39] 

我想知道的问题之一是,您如何区分实验室的工作和这些公司的工作呢? 还是(这两者)是有区别的呢?

Dr. Allbritton [18:46] 

实际上有很大的区别。我的实验室非常擅长提出新颖的想法,并进行可行性实验和所有早期阶段的工作。但是,如果要求我们弄清楚如何使1000台设备完全相同,那不是我们所在行的。由于规模较小,我们可以进行创意和创新。但是我们的技能并不足以使我们弄清楚如何制造出坚固而可靠的产品,并且(确保)每次产品都是一样的。在演示实验室的可行性与推出商业产品之间(往往)存在很大差距。我的实验室可以展示其可行性和实用性。在实验室中,我们可能会失败。而且,我们可能会多次失败。但只要我们偶尔会成功就可以继续前进。但是在公司中,大多数时候需要成功,并且需要满足客户的需求。公司要进行所有创新和创造性的思考,以便从我们的实验室获得客户所需的信息,并使其可靠,强大,可再现且可扩展。你无法为每台设备支付巨额费用,因此如何以较低的成本制造设备呢。实验室和公司之间实际上存在非常清晰的区别。拥有公司真的很不错,因为如果人们开始使用我们的设备,他们会说,Nancy,我们可以买100个这样的小芯片吗?而我们想,哦,不,实验室中的研究生不可能造出100个这样的芯片,这样的话,他们永远都不会毕业了。还有就是,每个芯片都可能与下一个不同,因为芯片是手工制作的。但是对于公司而言,只要他们看到了市场,他们就可以轻松满足这些需求和目的,并且可以进行一些个性化定制。然后,该公司还将进行很多自动化创新,而这些可能会或可能不会在实验室中完成的。

Peter [21:02] 

因此,您实验室的工作范围更广,根据结果来开发出先进的技术。而这些公司实际上是在优化和完善(这些技术)。很高兴看到您能够参与到这两个过程中:从头到尾或从​​构思到面向客户的整个过程。

Dr. Allbritton [21:21] 

是的,公司实际上是在告知我们(要)在实验室做什么。你经常会看到许多微型设备,尽管它们是出色而优雅的工程,但它们永远不会成为产品,因为它们过于复杂且不可靠。而且活动部件太多。生物学已经足够复杂。你可以拥有一个不那么完美的设备。而简单就是优雅,简直就是看待它的最佳方式。这确实很难设计一个简单的设备。但是我们尝试在实验室中朝这个方向发展,因为这意味着它会对他人更有用。

Peter [22:01]

所以,通过与这些公司合作,您会想到简单的想法,如果无法使用,则会有个(新)想法。

Dr. Allbritton [22:07]

那我为什么要这么做,也许我是在浪费美国国立研究员(NIH)的钱。

Peter [22:11] 

许多技术是决定着伟大科学与成为公司创始人的成败。但是您也说过,伟大的科学家也曾有过失败,或者伟大的产品背后并没有足够的科学依据。您将如何优化两者呢?

Dr. Allbritton [22:27] 

是的,(这之中)有各种各样的优雅技术。它们被用来回答基本问题,但是他们需要实验室中的专家来实际构建这些技术来得以使用。如此之多的活动部件是如此复杂,除非你的实验室中有人花其所有的时间来保持设备运转之类的。该技术可能是一项突破性技术,但仅限于小规模工作。而要具有更广泛的适用性,使它在商业上可行,很多人都想要购买它,必须有利润,企业才可以赚钱。(但)这不一定会解决科学问题。因此,你对待这两种方式的方式确实有所不同。在科学(或)在实验室中,你想解决一个大问题。即使这项技术是其他任何人都不会使用的(都没关系)。它可以在实验室中(完成),即使它是如此复杂。这都很棒。然后在商业界中,其想法是开发一种每个人都可以使用的,没有故障点的技术。人们可以放下架子,在不成为专家的情况下弄清楚如何使用它。就像打开计算机一样。如果必须学习如何编程,那么在使用它之前,仅限于计算机科学家,仅此而已。因此,要使其成为有用的产品并广泛传播,就必须提供更全面、更可靠且更简单的说明,并使其适合人们已知的工作流程。在制造产品时,是否可以使其适合生物学家的工作流程,使外观看起来更简单,使使用该技术的过程和感觉与他们已经在做的事情相似。我举一个例子。我们的第一个细胞分选技术是使用激光,这确实是一种非常好的技术。我们推出了这些小设备,我认为这是一种了不起的技术。但这非常复杂。当我们四处与商界人士交流时,他们会说,你必须去除那束激光,因为它太复杂了,这将成为非常昂贵的工具和设备;我不知道你将如何以便宜的形式制造这种产品,以供大众使用。这实际上是一个很好的建议。听到这个消息我感到非常失望,因为我认为那(技术是)很棒的。但是这些建议也真的很好。所以我和我的课题组(成员)回到了绘图板上。我们做了完整的设计更改,然后制造了这个设备。而且,大约一个便士,可以将它们破坏。而且很便宜。也很容易更换。因此,它确实更适合外观和流程。

Peter [25:28] 

保持简单的心态; 这是否是您与他人合作的方式呢? 您又是如何决定与谁合作的呢?

Dr. Allbritton [25:35] 

是的,我们实际上是在将合作伙伴视为我们的客户的方式下开展合作的。我的实验室非常擅长于构建事物以及创新和设计硬件微制造。我并不想说(我们是)最伟大的生物学家。我们一直想做的另一件事是确保我们可以构建他人所需的东西。如果你是在工程界,那么他们总是有很多令人惊奇的设备来解决问题。然后你与一位生物学家进行了交谈,他们正是(需要设备的人),所以呢,(仅管)你带有各种酷炫装置的好设备,很酷的工程技术,但是为什么他们要使用你的设备呢?其实我们所做的一切都是与潜在的最终用户进行协作。我们利用他们的意见和建议来推动下一步工作。他们告诉我们(他们)需要什么。然后,如果(他们)愿意,我们可以通过某些方式来填写他们的订单。如果我们认真听取他们的意见,我们就能了解对广大人群有用的东西。然后,我们对其进行设计和定制。我们想做的另一件事是制造设备,我们感觉这很棒。然后,我们可以把(设备)交给生物学家,他们会做一些我们没有预想到的事情,而我们已经离开了。是的,他们会回来告诉我们这出了错,那出了错。这会提醒我们,随后我们会重新设计,重新创新,经历整个设计周期,然后将其发回给他们。我们与所有合作者都在这种循环中进行工作。而且,我认为我们最终会开发出更实用的设备和工具,并且可以最终让用户想要使用这些工具,而不是我们出去四处游说,寻找问题以尝试并找到(解决方法)来(让客户)广泛使用我们的设备。因此,我告诉生物学家和生物医学研究人员,我的工作是建立一种技术,使您能够做以前从未做过的事情,并使自己成名。如果我让您成名,我就实现了我的目标,因为我创造了一种非常有用的新技术,很多其他人(也)都想使用。

Peter [27:48] 

是的,我想到的一件事是我们如何展示自己。在研究中,很多时候,我们都会考虑可能出错的步骤,以及如何优化这些步骤才能使该系统正常运作。 但是,如果从公司的角度来考虑,这就不算什么,“哦,这些都是可能出错的地方。 这些就是您可以使用的所有功能。 是的,这就是为什么它会被您所优化。 您是否对研究人员如何改变其展示工作的方式进行了很多思考呢? 或者他们是如何提出自己想法的呢?

Dr. Allbritton [28:26] 

是的,这是一个好问题。我认为,首先,沟通是科研的一切。如果你无法通过简单、清晰和令人兴奋的方式进行交流,则你的工作几乎毫无用处。特别是,随着时间的流逝,显然我们更好地与公众沟通比我们做了些什么更重要。以使我们的科学来解释一个人的日常生活。这样一来,你就可以想到街上的人,如何展示你的工作对他们的生活至关重要,如何使他们的生活变得更好。但是,即使在复杂的情况中,如果(你)正在向科学家展示你的工作,你怎么能不展示你的工具和技术呢,(因为我的工作中)运用了这项很赞的技术。但是正如你所说,这就是你所可以做的,使其简洁明了,并使展示方式简单明了。因此,我认为这是我们所有人都需要在科学研究中习得的技能,并确保我们不会消失在行业领域中。我们很多人都倾向于这样做的,因为我们知道这很舒适。不幸的是,我认为与其他科学家交谈,也与公众交谈时,科学确实对社会有害。

Peter [29:41] 

很赞同。我重视交流,我认为这很重要。我遵循的口头禅之一是,与所有人进行有效沟通很重要,对吧?因为如果您只是以一种自己能理解的方式讲话,那么没有其他人会真正理解。您也不能分享知识。

Dr. Allbritton [29:59] 

是的。而且,我认为你必须能够识别与你交谈的对象,并擅长为其他人量身定制相关内容。例如,与胃肠病学课题组的谈话和在会议上与微型工厂组的谈话完全不同。我经常去对高中生进行演讲,这是一种完全不同的演示方式。尽管基本概念相同,但必须以不同的方式呈现不同的形式。

Peter [30:35] 

我要强调的一点是,您实验室中的重点是团队合作和指导,这是紧密结合的。我想知道,当您从培养大量的本科生到研究生,再到到博士后时,是什么激励着您在教育中保持这种状态呢?您是否正在寻找某些东西,特别是当您接受或决定指导他们的时候?

Dr. Allbritton [30:57] 

从某些方面来讲,他们需要具备技术能力,我不在乎他们是否具备我实验室中的技能,我希望他们有动力。 通常,成功的不是最聪明的人,而是愿意努力工作、有动力和坚持不懈的人。 因此,我寻求的是有动力,坚持不懈,愿意努力工作,能够接受建设性反馈并且不会抵触的人。 如果让我来评价最成功的人的话,这些就是他们所具备的特质。

Peter [31:24] 

那他们是不是全部都是来自相对较新的人呢?

Dr. Allbritton [31:30] 

是所有人。知道工作没有偷懒或捷径,要努力才可以到达目的地,你希望学生能明白这一点。所以我的感觉是,我喜欢具有这些素质的学生。你希望冒险的学生会尝试一些东西,而不担心失败。因为通常我无法凭空想象(结果)。我会告诉我的学生,哦,那真是个坏主意。我认为这行不通。幸运的是,他们有时会完全忽略我。就像,“哇,好主意。我很高兴您不听我的话。”所以你还希望那些具有冒险精神而且已经准备好失败的人。这是一件好事,[只是]走出去,面对新的挑战,然后说,我想尝试一下,看看会怎样。并不好说(结果会怎样),我只能这样做,这是我想做的,因为我做得很好,但是想尝试尝试不同的东西。

Peter [32:33]

另一方面,这些是对学生非常有用的技能,您希望培养学生或实习生的哪些技能呢?

Dr. Allbriton [32:39]

是的,我认为口头交流,书面写作技巧非常重要。 我可能在还没有达到最好的写作技能时就开始了我的职业生涯。 而技术性写作,在项目书写作中要能表达出清晰、简洁的信息。 我想我们大多数科学领域的人,至少工程师、化学家和物理学家,我们都在这些科学领域中,因为我们并不喜欢写作。 但值得注意的时,尽管这并不是你最喜欢的事情,但你仍然必须学会写,而且写得越好,你的职业生涯就可以走的越远。

Peter [33:15] 

那您是如何提高写作的呢?

Dr. Allbritton [33:18] 

是的,老实讲,对学生来说,这很辛苦,没有尽头。在我实验室的学生,他们必须为研究写计划,我想我将他们折磨的够呛,让他们重写、重写再重写。而且我觉得他们有时感觉这很有趣,因为他们从我那儿拿回了稿件,一切都给划掉了,但到最后,他们发展出了一种友情。是的,我们在南希所做的修改中幸存了下来。所以,我们的想法是,在他们的整个职业生涯中,我们只需要迭代他们的论文,修改他们的论文及他们的文稿,并修改他们在NIH的项目书。我们进行修改后,再进行一遍又一遍的修改。随着他们不断进步,您可以开始看到他们写的越来越好。人们开始时的水平不同,有些人刚开始时就很出色。因此,修改工作并不多,但是其他人还有更多工作要做。但是他们越努力,他们就会越做越好,并度过这个周期。然后,我认为学会和与你不同的人一起工作-我认为所谓孤独的狼科学家已经成为过去。很显然,团队成员共同努力所取得的成就远胜于自己工作的人。如果你看一下当今所有的突破性科学,那就是来自不同国籍,不同背景的团队。因此,学会灵活应变,与他人合作并容忍他人不同的工作方式,我认为对于学术界,政府,行业,国家实验室的成功至关重要。即使你决定成为教学专业人士,能够与团队一起航行和工作,你将做的更好。

Peter [35:01] 

是的。通常,在其他所有人都有集体思维的情况下插入自己的人是具有挑战性的。您是否曾经感到过,作为生物医学科学领域的女企业家,您不得不面对许多挑战,而这些挑战来自于传统上由男性主导的领域呢?

Dr. Allbritton [35:19] 

绝对是。而且我年纪大了,特别是在化学和物理领域没有很多女性。当我开始我的职业生涯时,事情并没有进展的很顺利。我一直在想我该如何做得更好?你可以说,这是别人的错。他们没有正确地对待我,或者他们这样做了,等等,等等。但是我倾向于以不同的方式看待世界。而且我认为,无论你是谁,你都将面临年龄、性别或种族受到不公平待遇的情况。至少在我的职业生涯中,思考如何做得更好总是更好的选择?如果这对我来说不是一条好的路,无论出于何种原因,我可以朝哪个方向,哪里可以看到成功,并尽量避免反省并陷入一个领域,而是说:“好吧,让我们退后一步,我将朝另一个方向前进。而我在职业生涯中也做了一些重大改变,因为我想做点什么,但我又觉得这不是一个好主意,或者最终遇到了某些不太适合的情况。所以,我的想法是,我始终决定[遵循]后退一步,朝另一个方向前进,以实现自己目标的方法。我想这对我很有帮助。我有点像这样看待世界。如果你有一定的执着精神,并相信自己,且积极性很高,那么你可以继续努力。最后,我只是从一直思考中脱颖而出:好的,这没有按照我的方式进行。我只是想弄清楚自己,以及如何前进并从他人那里获取建议。当我开始我的职业生涯时,很难找到在物理学上跟我一样的人。这有助于激发人们的积极性和决心。但是随着我事业的发展,越来越多的人开始向我学习。这使生活变得更加轻松了。

Peter [37:13] 

是的,这听起来像是,不仅是对设备进行修改,而且也在对您的思维方式进行修改。 不仅从设备角度考虑问题,而且从根本上考虑我们如何解决问题, 对我有什么影响,对吗? 因为我在想,南希博士接下来要做什么呢? 您已经取得了很多成就,您认为自己会走向何方呢?

Dr. Allbritton [37:35] 

很多人一直在问我同样的问题。而我还没有很好的答案。每隔10到13年,我都会尝试重塑自我。因此,我现在正处于重塑自我的阶段。我有很多方向,我正在探索和思考,但我还不想透露任何秘密。而且我也认为,要保持新鲜感。有时候,如果你一遍又一遍地做同样的事情,你就会开始认为事情是理所当然的。这永远都不是好事。所以我的感觉是,你需要偶尔通过一次新的冒险或承担一些新的风险来改变自己的生活。要知道,不同的人在执行此操作时有不同的时间范围。而且我的时间范围大约是每10到13年。所以,我正在考虑下一步的发展。对于Nancy Allbritton,我已经完成了许多工作,还有哪些我还没有做过的大事情我认为可以做?随着年龄的增长,除了经营实验室或创办公司之外,还有其他更好的方法可以为世界做贡献吗?还有什么机会呢?未来我将如何产生更大的影响呢?变老的真正好处是,你的技能有了很大的提高,并且你与人合作和思考问题的能力也得到提高。至少我认为现在的我好了很多。而且我比年轻时更有耐心。因此,你要考虑如何使用这些技能,甚至要开始继续扩大影响力。所以,我还没有答案,敬请期待吧。

Peter [39:12] 

真的很振奋人心。非常感谢您做客本期Gastronauts播客。

Dr. Allbritton [39:16] 

谢谢你们的邀请我。今天的对话真的很棒。

Peter [39:32] 

Nancy Allbritton博士带领我们进行了一次“冒险之旅”,从产品构想到其执行和实施。在此过程中,我们了解到了沟通的重要性。科学(研究)是由具有不同专业知识的团队完成的。能够调整传达信息的方式将有助于使您的信息(传递)更加有效。非常感谢大家的收听,我们下期再会。有关我们的更多内容,您可以在Twitter @gutbrains上关注我们,或访问我们的网站thinkgastronauts com。没有我们在这里的优秀团队,就没有Gastronauts 播客。 Meredith Schmehl是我们的制作人和音乐作曲家。 Laura Rupprecht博士是我们的社交媒体经理。特别感谢Gastronauts Diego Bohórquez博士和Bohórquez实验室的创始人。

第五期:相信你的肠道

张旭朏/译

Peter [0:00] 

您拿到它了吗? 好的,那您咬一口吧。

Dr. Neunlist [0:07] 

这显然是一个苹果。 这酒是红酒。 我希望你给我的是法国红酒。

Peter [0:17] 

关于红酒对帕金森氏病的好坏存在一些争议。 我们选择苹果实际上有两个原因。 首先,因为我们已经知道纤维的增加有助于改善帕金森氏症。 但是另一个原因是,有时在苹果生长过程中使用的农药实际上是与帕金森氏病有关的触发性环境毒素。但是我想知道您是否可以用一个词来描述闭上眼睛时的感觉。当我(拿着)一些食物进来的时候…

Dr. Neunlist [0:50]

我很担心自己发现的是什么。 但后来在这种焦虑的情绪下,我得到了糖和酒作为回报。

Peter [1:01] 

听起来很不错。

Peter [1:13] 

大家好,我是本期The Gastronauts 播客的主持人Peter。 在Gastronauts,我们将致力于理解人体的(内在)联系,尤其是肠道与大脑的对话方式。我们希望更深入的研究优秀科学家们及其工作背后的灵感和动机,并希望通过了解科学背后的科学家们来了解不同科学家的想法以及如何建立一个更好的科学共同体。 那么,请跟我一同走进本期播客,探索我们的内部空间。

今天,我们很荣幸邀请Michel Neunlist博士。 Neunlist博士在Tung博士实验室和Johns Hopkins获得了心脏电生理学博士学位,旨在电活动中研究心脏如何运作,如何跳动的,并获得了路易斯巴斯德大学的博士学位。 之后,他在德国汉诺威的谢尔曼(Sherman)博士的实验室继续完成博士后研究,旨在研究整个神经系统,即控制我们肠道的神经系统和支持细胞。 自完成博士后工作以来,他开始了自己的实验室,目前是南特大学神经胃肠病学主任。 那么,感谢您的到来。 Neunlist博士,您能否告诉我们更多有关肠神经系统关键功能的信息,以及您实验室中对此进行的一些努力呢?

Dr. Neunlist [3:03]

感谢你们的邀请,让我在这个非常有趣的Gastronauts播客里发言。 正如你所提到的,我们实验室的主要重点是研究肠神经系统,通常称为第二大脑。 确实,正如您所知,肠道是仅次于大脑的第二神经器官。 我们正在研究的主要是整个肠道壁上整合的神经系统(由大约2亿个神经元和10亿个神经胶质细胞组成)如何调节主要的肠道功能、运动性及屏障功能。 [我们感兴趣的是]神经系统如何在各种疾病中发生变化,不仅是胃肠道疾病,而且也包括脑部疾病、神经系统疾病,特别是神经退行性疾病,例如帕金森氏病。 我们正在进行的最后一项研究是在疾病状态下,如何针对神经系统的器官功能恢复。

Peter [4:25] 

这真的很有趣。听起来您的实验室正在付出很多的努力。 我(有点)想将其分解开来。 我想问的第一个问题是很多人可能不知道肠道有-如您所说的那样多的神经2亿个神经元,而且还有数百万个神经胶质细胞。 与大脑神经元的数量相比,这又是多少呢?

Dr. Neunlist [4:49] 

当然,就数量而言,它要少得多。 质量并不总是取决于数量。 但是给你一个数量级(的话),与[大脑]相比,肠道中的神经细胞少了约1000倍。

Peter [5:09] 

能够直观表示肠神经系统中有多少个细胞,实在是太好了。 那么很明显,肠神经系统对于我们的日常生活至关重要。您之前提到了您正在研究的神经退行性疾病的一些工作。 我想知道肠神经系统在帕金森氏症或阿尔茨海默氏症等某些神经退行性疾病中如何发挥作用的呢?您在这方面做了哪些研究工作呢?

Dr. Neunlist [5:39] 

我认为这是一个非常复杂的问题。 并且我认为,试图证明脑疾病中整个识别系统的因果关系仍然是一种推测。 但是我想我们如何整合这两个神经系统可能受到了通用机制的影响。 因为根据定义,我们认为肠道是一个神经器官。

Peter [6:06] 

就像肠道是第二大脑这样吗?

Dr. Neunlist [6:08] 

就数量而言,它是第二个大脑,但从进化的角度来看,它(可能)是第一个大脑,即原始大脑,因为当您观察非常原始的器官(如水母)时,它们已经有神经元,但这些动物并没有大脑。[并且]它们已经具有所谓的肠道神经元。 因此,回到问题上来,为什么神经系统在很大程度上受到脑部疾病的影响,不仅在遗传疾病中,而且在精神疾病中。可能是因为这些疾病实际上与遗传缺陷有关, 由于它们在第一脑和第二脑中共表达,因此它们都调节神经元的功能。 它们可以诱发胃肠道合并症以及脑功能障碍。 这也可能是为什么在许多神经系统疾病中经常观察到胃肠道合并症的原因,因为它们具有共同的途径和共同的起源。

Peter [7:19] 

很少有人意识到胃肠道合并症或与神经问题相关的胃肠道问题。 我想很多人在提到帕金森氏病时,都将其视为运动障碍,有点震颤,步态不稳,但是许多帕金森氏症患者经常会出现便秘或腹泻,是这样吗?

Dr. Neunlist [7:40]  

确实如此还有意思的是,这些症状[或至少部分症状]可被视为症状前症状。

Peter [7:49] 

那是在运动障碍之前。

Dr. Neunlist [7:51]

它发生在运动障碍之前,并且有三联征的症状前症状,包括睡眠障碍,包括失眠或嗅觉缺陷。 第三个是胃肠动力障碍,例如便秘和吞咽困难,(具体来说)是吞咽困难、胃排空困难或减慢,这被认为是症状前的常见合并症。

Peter [8:30] 

(我们)可以将这些看成是某人有两个或三个症状的警告信号。

Dr. Neunlist [8:35] 

确实。这不仅仅是一种症状,也不只是因为便秘,就认为你更容易患帕金森氏病。 但是,如果您有睡眠障碍和便秘,那么患帕金森氏病的风险就会增加。 因此,这就有了一个假设,即如果胃肠道症状,存在于疾病的先前发展可能起源于肠道。 也许,这在利与弊之间仍然是一个非常热门的争论,因为您可能会出现胃肠道症状,且仅仅是因为身体对退化过程更加敏感。而在此处疾病的发生可能相当复杂。

Peter [9:26] 

所以,您是在谈论某种胃肠道或胃肠道表现,无论是因为神经系统更敏感而来,还是表现出的这些表现- 胃肠道神经系统的异常与中枢神经系统的异常,就像是先有鸡还是先有鸡蛋,对吗?

Dr. Neunlist [9:48] 

在帕金森氏病中,这并不是纯粹源于大脑,更重要的是退化性疾病的驱动假设,参与疾病功能调节的关键分子。

Peter [10:12] 

它们都有错误折叠的蛋白质。

Dr. Neunlist [10:14]

是的。 这种错误折叠的蛋白质可能被多种环境因素所利用。 有效地来说,这是全面诊断之一。(对于)真正的诊断,有趣的是,只能在验尸后利用活检进行检查,因此帕金森病只能在[死后](才能)进行明确的诊断。

Peter [10:37] 

之所以只能在验尸后完成,是因为我们无法掌握那部分还活着的人的大脑吗?

Dr. Neunlist [10:43] 

是的。 因此,这个构想可能是你不得不考虑另一个器官,可以按常规方式来操作的器官。 (而)活检结果不会威胁生命或风险最小。

Peter [10:57] 

您正在寻找您可以掌握一些组织问题的另一器官,(保证)人还活着,而且(也)看看这是否能诊断。

Dr. Neunlist [11:06] 

具有神经元的器官,我们可以将其用作[诊断工具],有什么比能满足这种条件的肠道更好的了呢,这意味着每个人都有机会或进行活检,结肠镜检查。 如上所述,肠道有神经系统。 因此,这是我们是否可以从活着的患者那里识别活检,鉴别正常与病理标志的驱动思想。该想法支持至少两个器官受到影响,而且治疗肠道是否会改善脑功能的治疗(也)是一个问题。

Peter [11:50] 

这是您所感兴趣的,对吗?目前(有人)了解吗? 还是说,这是我们需要继续进行研究的内容呢?

Dr. Neunlist [11:57] 

就我个人而言,我真的不相信当患者被诊断出患有帕金森氏病时,你有机会恢复该病,虽然你可能(有机会)减慢疾病发展的进程,但还是有一些数据(一项有趣但仍具争议的研究)表明,这会发生在进行了阑尾切除术的患者中。

Peter [12:28] 

取出阑尾的人。

Dr. Neunlist [12:31] 

在过去的几年中,患帕金森氏症的风险大大降低。 更有趣的是,这种降低患病风险的结果仅出现农村地区的患者中,而非城市中的患者。

Peter [12:53] 

而且居住在农村地区与城市的人生活方式截然不同。

Dr. Neunlist [12:58] 

假设之一表明(城市中的)人们更容易接触农药。 例如,农民接触农药会产生更高的帕金森氏病风险。 但是,这项研究再一次受到争议……当然,这是一项可以提高医学研究质量的研究,这意味着很长一段时间内你有(相关的)900,000名患者,但其他研究表明阑尾切除术对帕金森氏症的风险没有影响。 而另一个研究表明,这实际上增加了(患帕金森病)风险。

Peter [13:44] 

数据仍然有些混乱。

Dr. Neunlist [13:48] 

我可能会指出一个事实,那就是需要更多的研究

Peter [13:53] 

如此看来帕金森氏症是某种遗传因素的结合。 而后是某些环境毒素或某种会影响肠神经系统的物质(所导致的)。

Dr. Neunlist [14:03] 

由于大脑的功能会影响运动症状和胃肠道功能障碍,但是不知道大脑是否独立存在,或者是否与另一个器官相关联,从而影响这两个器官。

Peter [14:20] 

因此,了解整个神经系统和中枢神经系统之间的相互作用,以及如何出错(的机理)。 疾病仍是我们需要攻克的难关。

Dr. Neunlist [14:31] 

尤其是了解疾病的机理(方面)还需要很多的研究工作。一旦我们了解了疾病的机理,就可以提出有效的预防方法。这是主要目标。

Peter [14:45] 

(我觉得)进行帕金森研究非常具有挑战性,因为我们必须随着时间的推移考虑这些环境因素。 然后在一定的时间范围内,这些环境因素将发挥最大的破坏作用。 而立即把握时机与了解整个进度同样重要。 作为科学家,我有点想借此来进一步了解您的成果。 我想问一下您的研究之路。 是在正确的时间和正确的地点,或在正确的时间有正确的导师(领导)呢? (就个人而言)您能否告诉我们更多有关您的成长之路的内容呢?

Dr. Neunlist [15:20] 

从个人的角度来看,我认为你提到在正确的时间遇到​​合适的人对于发展你的职业至关重要。但是总的来说,您也必须这样做,我认为这是一门科学可以提供很多回报的地方。你必须对科学充满热情,如果你真的想从事科学事业,就必须(具有)好奇心。我的意思是,这并不容易,你必须保持幼稚,保持发现并开诚布公。当然,你也必须努力工作。我记得在霍普金斯大学攻读博士学位时,有一个传单,在上面我看到一只海鸥,这是一个吃青蛙的建筑工人。它的嘴里有青蛙的一部分。青蛙则是一只手臂握住了这只鸟的脖子,以防它被吞下。这就是科学家的形象。只要你不放弃,你总会充满希望并有所收获。如果你放弃了,那你就会被科学所吞噬。所以永远不要放弃。这就是希望的讯息。我的意思是,这非常关键,因为你的假设并不总是[正确],而您的实验也不[总是]有效。但是,如果你坚持你所要坚持的,那就总有解决方案。我认为这也是乐观的讯息,你必须始终保持乐观的态度。而在科学中,有一种方法是不正确的路。但是你必须走另一条路直到最后,成功之门将永远打开。

Peter [17:34] 

您曾简短地提到过,保持乐观的态度是一种在解决问题的道路上不遗余力的奉献精神。 您是怎么知道这不是正确的方法呢? 您(又)如何知道何时要更改方向呢?

Dr. Neunlist [17:49]  

这是直觉。 这就是为什么我们的肠子会紧张。 这就是为什么我们有第二个大脑。

Peter [17:57] 

作为一名研究生,有时我会在想,我会做一些实验,但却没有结果。 我应该放弃并转到其他项目吗? 还是我应该继续下去? 或者我应该继续坚持多久呢?

Dr. Neunlist [18:08] 

这取决于我不愿意放弃。 你必须对自己充满信心,认为自己所做的是正确的事情。 而且,你不放弃,并且相信自己做的事是对的。但通常来说好主意(总)是你的第一想法。 再次,(就是)直觉。 这很关键:相信自己的直觉,也要相信(或)听听导师的建议。 我觉得是这样的。

Peter [18:36] 

您一生中只有几个导师。与这些导师建立这种关系很重要。 您从路易斯·巴斯德大学获得博士学位,但您当时的科学导师是约翰·霍普金斯大学的董博士。对吗? 您能告诉我一些有关您决定去霍普金斯大学进行研究的情况吗?

Dr. Neunlist [18:56] 

这并不是我进入霍普金斯的直觉。 但这是另一种感觉。我遇到了某人。 我的女友是美国人,所以这不是一种直觉。 这只是生活事件。 我的意思是,并非所有事情都已计划好。 因此,如果你将直觉与其他类型的心脏感觉相结合,那么我之所以选择霍普金斯是因为霍普金斯的BME(生物医学工程师)部门享有盛誉,因为我是一位生物医学工程师,并尝试过(申请)。 这是你必须要做的事情,你必须尝试一下。 然后我写了很多封信。 然后董医生[回复了],这就是“好哇”。 当事情成熟时,在合适时间的相遇。

Peter [19:49]

您是如何对电生理学或电回路如何调节我们的身体感兴趣的呢? 我的理解是,您的热情是了解这些回路的功能,是吗?

Dr. Neunlist [20:02]

并不是。(为了)了解生物学如何运作,生命如何运作,器官如何运作,因为这基本上也是一个工程问题。 对于工程师来说,还有什么比了解人体的工作方式更好、更复杂的呢?人体要复杂得多。我想这也促使我成为了生物学界的工程师。 如前所述,机会是我必须在心脏内这样做,在我整个职业生涯中一直伴随着我的是,研究电(信号)如何参与器官的生物学,首先是心脏,然后才是肠道。因为我的定义是神经器官,生物电部位和记录肠道的功能。 因此,这是关于我的研究之路。

Peter [21:02] 

您具有的工程背景,并且了解电以及电回路如何在基础生物学中发挥作用,这是从心脏移植到研究肠胃的自然转变吗? 您有所保留吗? 您是否在想,哦,也许肠道与心脏不太相似呢?

Dr. Neunlist [21:19] 

是的,因为两者之间的联系是研究方法。 为了测量当时的电活动,它是通过微电极进行的。 当然,如果你想了解神经回路的活动,不仅是当时的一个神经元,而是还调节着许多神经元的整体反应。 光学传感的优势在于,通过光学测量,你可以对整个网络中的电活动进行全局测量。 因此,最能回答你的问题的答案是(电)网络如何改变疾病。此技术如何用于解决心脏问题的常见方法,这与肠道神经系统和生理学中的问题截然不同。

Peter [22:12] 

因此,了解网络的方法就是您来[回答问题]的方法。 您在心脏中使用了它,并且发现肠道也具有适用性。

Dr. Neunlist [22:21]

是的。 之后,我们将尝试通过整合观察到的功能来进一步了解已知的活动,因为最终目的是了解器官的功能,无论是运动功能还是更多的屏障功能,这对我来说会更有趣。

Peter [22:43] 

您能够从研究的心脏组织无缝转换到肠胃组织,是因为您拥有了这种方法,并且拥有了可以轻松地从一个领域应用于另一个领域的技术。 能够将技术应用于不同领域是非常强大的。 但我也认为,重要的是要应用(那些)您认为对科学研究至关重要的某些准则。 您是否向您的学生或受训人员灌输了这些准则呢? 您能分享些科学方法的基本原理吗?

Dr. Neunlist [23:20] 

我的意思是,最重要的方面是对你的操作采取严格的科学方法。 科学的[重要性]也是可重复性。 我的意思是,你必须验证所有概念; 对于我而言,这是至关重要的研究,我想这(也)是任何研究的基础。 我知道这是非常基本的原则。 但这是科学的核心结构,这是基础,尤其是在科学(研究)正在迅速下降的当今社会, 这个问题经常(会)被问到。我认为这是我们做科研时生存的唯一途径。 我们还必须知道,这并不意味着它是对的,因为科学正在[不断变化],它[将会]发展。 在你从事科学工作时,它必须已经[适当地]运行。

Peter [24:28] 

所以,对您的研究有严格的要求或奉献精神至关重要。 可重现性是您认为必不可少的东西,您想(将其)灌输给您培训的其他人。 我们希望我们的科学具有可复制性。 我想可能会有与我们发现的发现相反的发现,但我们的实验需要重现。 我认为这真的很厉害。 因为我们生活在一种大环境当中,某些科学发现的新闻可能会很快受到挑战。 我们必须了解这些发现中每个工作所付出的努力,所花费的时间,并继续灌输对未来科学家们的奉献精神,这是我们认为的强有力的东西。

Dr. Neunlist [25:10] 

我认为这是基础吧,尤其是在具有这种信誉的地方,因为各地的科学也越来越多地由金钱驱动。 尤其是在资金短缺的危机时期,尤其是在当今社会上。 我认为在金钱的驱使下,保持正直非常重要。

Peter [25:29] 

非常感谢Neunlist博士参加我们本期播客。

Dr. Neunlist [25:31] 

非常感谢你们,很高兴与你交谈。 谢谢。

Peter [25:45] 

哇,我觉得这是一个值得珍藏的非常重要的信息。 科学旅程伊始,热情有助于开启研究。 但完整性才是严格的标准,它可以有助于永存您的发现并经受时间的考验。 我认为这是我们所有人都曾经听过的一课,但是绝对值得回顾。 从现在开始,(请您)思考一下,我们如何使我们的工作和合作者的工作得到重视呢? 非常感谢大家的收听,我们下期再会。有关我们的更多内容,您可以在Twitter @gutbrains上关注我们,或访问我们的网站thinkgastronauts com。没有我们在这里的优秀团队,就没有Gastronauts 播客。 Meredith Schmehl是我们的制作人和音乐作曲家。 Laura Rupprecht博士是我们的社交媒体经理。特别感谢Gastronauts Diego Bohórquez博士和Bohórquez实验室的创始人。

第四期:照亮前路

张旭朏/译

Dr. Spencer [0:00]

它很甜,非常好吃。(让我)有种想要吃更多的冲动。 所以这是个令人愉快的食物。 我非常有信心至少知道其中的一部分。

Peter [0:12]

嗯嗯!那您认为是什么呢?

Dr. Spencer [0:19]

我猜有巧克力包裹在外面,里面有一些柔软的东西,像蜂窝状或(我)不太确定中间是什么。

Peter [0:25]

好啦,您可以摘下眼罩了。 真正准确的描述。 是Tim Tam,(Tim Tam)在澳大利亚真的很受欢迎吗? 我知道在美国这边,我们总是谈论:“哦,是的。Tim Tam :澳大利亚的小甜饼。”

Dr. Spencer [0:40]

蛮有趣的。它们很受欢迎。是的。人们对它很痴迷。

Peter [0:48] 

太好啦!谢谢您。

Peter [1:03]

大家好,我是本期The Gastronauts 播客的主持人Peter。 在Gastronauts,我们将致力于理解人体的(内在)联系,尤其是肠道与大脑的对话方式。我们希望更深入的研究优秀科学家们及其工作背后的灵感和动机,并希望通过了解科学背后的科学家们来了解不同科学家的想法,并更好地理解科学过程中的步骤。 那么,请跟我一同走进本期播客,探索我们的内部空间。

本周,我们邀请到一位对控制肠道的神经网络非常在行的专家。 尼克·斯宾塞(Nick Spencer)博士的实验室专门对这些神经进行研究,以治疗便秘和内脏或体内的疼痛。 他在澳大利亚墨尔本莫纳什大学完成了神经生理学博士学位。 随后,他前往内华达大学进行了博士后工作,在那里他研究了控制肠道的神经系统。在澳大利亚阿德莱德的弗林德斯大学(Flinders University)任教后,继续了这项研究工作。斯宾塞博士,感谢您今天的到来。

Dr. Spencer [2:37] 

非常感谢你,彼得。 很高兴来到这里。

Peter [2:40] 

那么,我想了解的问题之一是,您能否向我们介绍一下您当前的研究工作,以及您如何看待神经生物学和胃肠病学这两个学科的背景呢?

Dr. Spencer [2:52] 

当然可以。20年前,当我完成博士学位时,人们对肠道的兴趣一般。 大家认为它确实是一个吸收营养并排出废物的器官。 但如今,正如你已经了解到的那样,在媒体上,人们对肠道的关注和兴趣越来越多。(它)不仅是为了消化,吸收,尤其是肠道内的细菌会对我们的幸福和健康产生重大影响。 如此多的学科,例如精神病学和心理学,以前对肠道毫无兴趣,现在对我们的工作极为感兴趣。 (而)我们真正感兴趣的是肠壁神经与大脑的通讯方式以及相应激活机制。

Peter [3:42] 

(那么)您能告诉我一些研究肠道神经的相关技术或工具吗? 它们是否不同于人们传统(意义)上用来研究肠道的工具呢? 或者,您可以大致告诉我们一些有关这些工具的信息吗?

Dr. Spencer [3:47] 

当然。 技术发展日新月异。 信不信由你,现在我们正在做的某些事情已于20年前(大为不同)。 我们现在使用的大多数技术,包括电生理学,(已经)可以在其中记录神经传导的电信号。 这种情况已经完善,但本质上并没有在神经生理学记录上取得重大突破。 我们使用的标准免疫组织化学,可以检测神经细胞内产生的化学物质。 这是一种相对基本的技术。 我们使用的新技术之一是光遗传学,使用光来刺激细胞。 我们可以(通过这种技术)激发或抑制神经等细胞。这是一个非常非常令人兴奋的工具,一种很强大的工具,实际上发展(到现在)也就只有五到八年的时间。

因此,我们主要使用免疫组织化学,追踪技术,光遗传学,电生理学,另一个主要进展是转基因动物的开发,我们可以在其中操纵动物的DNA。 例如,我们可以在目标细胞中插入特定的荧光标记,这样我们就可以看到动物体内的哪些细胞发光,以及它们在体内的行为。

Peter [5:21]

所以,听起来好像您拥有大量真正有趣的技术,这些技术正推动着您的研究-从光线照进肠道到特定颜色标记蛋白质来查看特定蛋白质。 一般来说,技术似乎是科学的巨大动力。 我想知道,如果让您回到30或40年前,您对科学的态度会有何不同?

Dr. Spencer [5:45]

哇,彼得,这是一个很好的问题。 从来没有人问过我,我也没有真正考虑过。在我回答之前,可能不得不说是20、30、40年前,这些问题会大不相同。 一般来说,现在的科学(研究)要困难得多。 这非常非常令人兴奋。 我们很高兴能在这个令人难以置信的时代生存下来,在这个时代,技术正以惊人的速度发展。 但是随着科技的发展和越来越多的信息被发现,问题变得越来越困难。 因此,我想回答你的问题(答案是),那时候我们会有不同的问题。 我的意思是,我们只是在午餐时谈论[…] DNA仅在几年前才发现,对吧? (人们)认为恐龙已经存活了好几亿年,这非同寻常。而我们那时甚至都不知道DNA是什么。

Peter [6:37]

我们听说CRISPR(基因编辑技术)或其他修饰DNA的技术。

Dr. Spencer [6:41]

那就对了。 绝对是惊人的。 谁曾想到我们可以将DNA用作水母中的荧光标记物并将该外源DNA插入小鼠体内呢? 如果在20、30、40年前回答你的问题,我们并不会相信。 所以科技发生了很大的变化,而且变化非常快。也许我们回到了那时,我们只能局限于相对原始的技术,例如机械记录和一些基本的电生理学。

Peter [7:10] 

所以,您要说的问题,实验室所提出的问题类型将完全不同。

Dr. Spencer [7:15]

是的,差不多。非常(接近)。

Peter [7:17] 

您认为问题会更简单些吗? 我觉得当我想到科学问题时,常常会想到这些,而一些最简单的问题(往往却)是最难回答的问题。这些技术的进步正在帮助我们回答这些简单的问题,还是您认为它们使我们朝着更具体的针对性问题前进,而这些问题只是简单问题的一个方面?

Dr. Spencer [7:42] 

我想答案是两者兼有。我的意思是,随着我们发现更多的信息,我们还将解决更多的问题,所以你是对的。我同意,有时最简单的问题是我们不知道且尚未解决的问题-不一定尚未解决,而是无法获得答案。几乎并不是因为这项技术可能还没有出现。我们可能需要考虑的事情之一就是像我们这样的哺乳动物(如何来)适应。例如,当我们在小鼠中突变基因时,动物的行为会急剧改变。但是通常一段时间之后,它又可以回到开始时的状态。我们使用“抵消”这个词(来形容)。因此,如果从出生时(就)删除了一段基因,该动物可能会最终,也并不一定总是最终恢复到这种与起始行为非常相似的状态。 那么,技术(层面)已经解决了这一问题。例如,(现在)能够迅速、瞬时地删除一段DNA,然后立即观察到对动物的影响。因此,你有很好的对照参考。这对于解决某些问题非常非常有用。

Peter [8:53

我认为这很有趣,因为所有这些问题都与时间有关。当我们制造转基因小鼠或对其进行修饰时,我们必须立即对其进行研究,因为长期(的情况下)存在(行为)抵消。我对CRISPR和基因编辑有些感触。而且我们对这项技术真正的实现尚未了解,因为我们不知道会发生什么(形式的)抵消。而且我认为这即很有趣,也很强大,就我们现有的这些技术(而言),除非我们长期研究,否则它们不会被完全理解。我想谈一谈光遗传学工具,在此(技术中)您会(利用)发出(的)光线以打开或关闭通道,这将激活或关闭特定的细胞。您是如何想到在光线不足的肠道中直射光线的方法的呢?

Dr. Spencer [9:52] 

这是个很好的点。当然不是,(或者说)应该没有。肠道是我们所谓的周围神经系统的一部分。大脑和脊髓是我们所谓的中枢神经系统的一部分。一般来说,在中枢神经系统上的研究人员可能要多于周围神经系统。总而言之,我们利用大量研究中枢神经系统的科研人员所采用的技术,成功地证明了光遗传学在大脑和脊髓中的作用。然后我们意识到,周围的内部器官并没有发生太多变化。肠道是光遗传学的绝佳选择,因为它是体内唯一具有自身内在神经系统的内部器官。换句话说,它有神经元,不仅是神经末梢,还有神经细胞体及肠内核。我们称其为肠道神经系统。这意味着我们可以轻松地在肠道中使用光遗传学,以表达你所谈论的光敏通道来操纵肠道功能。

Peter [11:04]

您认为通过操纵这些特定于肠道的神经而不是周围其他任何地方的神经,可以解决什么生理或医学问题吗?

Dr. Spencer [11:14] 

是的,这是一个好问题。你可以使用该技术的多种潜在途径。如你所知,肠道疾病很多。现在,我们不是特别致力于疾病的研究,我们试图了解肠道在健康状态下如何独立运作。(这个问题的最简单答案是)其中的主要问题之一是慢性或特发性便秘,不幸的是,患者通常只能使用泻药(来缓解)。现在,市场上有一些药物可以刺激神经系统和肠道。但是由于受体通常在多个器官中表达,因此当您服用刺激肠神经药物的同时,也会刺激身体其他部位的神经。它们不仅仅针对肠道神经系统。光遗传学的优点在于,你可以表达对光敏感的蛋白质,因此使通道成为对光做出响应的离子通道,尤其是在特定的神经元群体中。在肠道内,这意味着它可以发出特定颜色的蓝光,这会激发在肠壁中的兴奋性神经元。在我们的研究中,它刺激在肠壁上,导致肠道在没有任何药物的情况下收缩并排出便便。

Peter [12:36] 

您是否认为这对人类是潜在的应用呢? 这是否可以用于人类并最终治疗便秘呢?

Dr. Spencer [12:44] 

这是个好问题。随着大量新技术的出现,通常都有优点,然后伴随一些缺点。使用遗传学有一些非常非常明显的优势。也有明显的缺点。优势在于,仅刺激肠道就可导致肌肉细胞收缩并使排泄物增加,换句话说就是改善运输。因此,优点之一是可以立即激活肠内神经。你不需要口服任何药物;它不必被血液吸收,也不会非特异性地作用于所有其他器官。这是一种仅刺激特定类型的神经元(例如,肠道中的兴奋性神经元)的有效方法。其不利之处在于,你需要将最初来自藻类的光敏DNA掺入神经元中。现在,这听起来有点像科幻小说,但是不管你相信与否,关于在人类中拥有无害病毒的概念已经得到认可并投放市场。但是问题是,如果长时间将光照射到肠道上会发生什么。有证据表明,长时间接触可能无济于事。而另一件事是你需要通过肠壁(光源)在内部合并。通常,您需要通过外科手术将微型发光二极管植入肠道。现在,我们已经在老鼠身上做到了,并且可以正常工作。从概念上讲,没有理由不对大型哺乳动物起作用。你只需要确保在整个神经系统中获得足够的神经元,从而形成光敏感通道即可。

Peter [14:42] 

哇,听起来确实有点像科幻小说。 我想现在很难说服某个人,是否在他们的肠道中放置发光二极管。 但是,如果便秘变得如此严重,人们是愿意尝试很多事情的。 我在诊所中看到在很多(便秘的)患者-这确实是一个灾难性的问题。 这是他们的主要担忧之一,对吗? 他们(可能将)会患有癌症,炎性肠病或任何肠道疾病,其中一个主要症状是便秘引起的腹痛。 我想更进一步走近科学方面,并询问您的发展道路。 我想知道您对研究生有什么建议吗? 或者,如果您对自己读研究生期间有何感想? 您是如何想到(研究)这个领域来追赶快速发展的领域的呢?

Dr. Spencer [15:19] 

嗯,好问题。 我认为最重要的是,你要追求自己感兴趣的事物。现在,如果您来自大学背景,并且对某个领域感兴趣,那么我的观点就是追求自己的兴趣。 我见过有些人进入他们并不真正感兴趣的领域,只是因为有更多的钱,或者还有其他一些附带作用。几年后,他们变得非常不高兴。 因此,我认为最重要的是关注您感兴趣的领域。就研究生期间而言,我知道我对神经系统感兴趣,这些神经如何相互交流,以及它们如何发挥作用,我简直不敢相信可以从哺乳动物身上切除一部分肠,即使它不再与大脑或脊髓相连,它仍然可以工作。

Peter [16:26] 

那么,从老鼠或任何动物身上抽出来的肠子能持续多久呢?

Dr. Spencer [16:32] 

无论我们是否相信,我们已将患者的整个结肠移除,而小鼠,大鼠,猪,豚鼠(移除结肠后),(肠道)可以存活长达10到12个小时之久。只要溶液中有氧气,您可以保持它们的存活。

Peter [16:50] 

哇,太酷了。 我想(是)这把您吸引到肠道的研究中的。

Dr. Spencer [16:54]  

确实如此,你会觉得肠道有点儿像心脏,你握住心脏,它仍在跳动,这是一个内在的心脏起搏器。肠道里也有起搏器细胞。 而且他们在最近十年已经被证实。 因此,肠壁内的神经也可以以有节奏的起搏器方式表现。 我真的对如何提高或降低(它的)频率很感兴趣。 这花了一段时间,但我们取得了一些令人兴奋的进步。 这是非常有益的。 那么,回到你另一个问题,我认为解开以前未知的问题所带来的奖励和兴奋是非常强大的。没有薪水可以代替这种满足感。

Peter [17:44] 

是啊。 我想这(也)是我经常看到的主题,它是回答其他人没有答案的问题的动力,感谢您与我们分享。 我想问的另一件事是,我们讨论了很多有关技术的发展以及事物如何随着时间而发展。 我想,作为科学家,对于我们来说重要的是要认识到这一领域是如何变化的,以及我们之前出现的一些巨人和他们所做的研究。 我想知道,是否有特定的科学家或特定的小组真正启发或激发了您的工作,或对您的工作产生了重大影响呢?

Dr. Spencer [18:21] 

是的,这是一个好问题。 是的,肯定有很多人和团体。我想可能对我影响最大,最动人的故事之一是位澳大利亚人。 来自阿德莱德的罗宾·沃伦(Robin Warren),他是唯一一位获得诺贝尔奖的(澳大利亚人)。 他发现细菌实际上可以在胃中生活。 吸引我的并不只是发现本身,激发我灵感的是他的发现方式。 因为至少有二十年甚至更多的十年,没人相信他。 2005年,他接到一个电话,说他获得了诺贝尔奖。 而且我认为他坚韧不拔,永不放弃的毅力鼓舞人心。

Peter [19:43] 

哇,那真是一个鼓舞人心的故事。 我想我们谈论过很多关于天才的事,对吧? 我们认为既有天赋,又有努力。 而且我们认为,我无法模仿,因为某人天赋比我多的多。 但是我们又认为,如果我们付出更多的努力,我们同样可以做到,并且可以坚持下去。 但是当其他所有人都告诉你时,你就能够坚持下去。 天才(这个观念)本身就是不对的。

Dr. Spencer [20:09] 

是这样的。

Peter [20:11] 

我想问的另一件事是关于您从决定来美国做博士后,然后再决定回到澳大利亚成为一名PI,成为一名独立研究员,来回离开您的国家无疑是一个冒险的决定。 您能否告诉我更多一些有关您所经历的事情以及您对正在经历类似决策过程的人的建议呢?

Dr. Spencer [20:37]

这是一个非常重要的问题。在内华达州大学和一群优秀的人,在一个好的机构里做了9年的博士后,我的产出率中等,并且学习了许多新技能。然后我得到了一些资金,这变得有点尴尬,因为与之共事的人就在隔壁(并产生了分歧)。从科学上讲,我发现很难脱离。关于谁的想法是什么以及我应该在这个问题上进行什么工作,或者是你的项目还是我的项目,(这些情况变得)有些紧张。(此时)我获得了一个很好的机会。而我在北美有资金,但我全部放弃了,放弃了这个不是很好的机会。(而)在南澳大利亚,这是个永久性职位。但是我几乎没有资金可以投入,我将所有设备和东西都留在了(原来的课题组)。我离开的原因是,在某个时间点上,你必须真正证明自己是完全独立的。每当你提交申请时,如果你所在的课题组很大,对于世界上最好的课题组来说都没关系。如果你提交申请,请立即认为是该课题组或课题组的高级研究员放弃了该项目。而你实际上只是参与其中的工作。你实际上只需要突如其来,证明自己可以独立工作,就可以真正推动项目。你是这些论文的资深作者。如果要成为独立的PI,每个人都必须进入一个循环。而永久留在同一博士后(工作)中,很难突破。

Peter [22:22] 

您是否曾经想过拥有自己的想法是具有挑战性的呢? 或者,也许您在经历此过程时,您的研究生生涯中是否有一个时间点,例如:“嗯,这主要是我的想法?”(而)我(只)是一个相对年轻的研究生。很多时候您在实验室,都是PI的许多想法,而您在学习大量知识。 但是,是否在某个时间点,您遇到了可以实现自己想要的转折点的机会,而这些主要是我的想法呢? 有没有一种方法可以加快该过程呢? 还是(这是个)随着时间的流逝而(自然)发生的事情呢?

Dr. Spencer [22:50] 

一个好的问题是:发生了什么。当您第一次走进实验室时,我想没有人会知道他们将要做什么或将要发现些什么。这就是进行独立科研的重点;它是回答尚未解决的问题。因此,不应让你因一无所知而灰心丧气。当进入实验室时,任何人都应该考虑这个问题。而且,如果你对它感兴趣,并且你充满热情,请坚持下去。随着时间的流逝,随着你进行更多的实验并进行更多的阅读,参加更多的会议,遇到更多的人,您会(从中)发现某些事情。你会意识到,或者你会听到显而易见的事情,这些事情尚未解决。我们不知道的主要问题是什么?然后你会想:我能做些什么来回答别人无法解决的问题呢?现在答案是否定的。其他人已经在做,或者他们做得更好。但是到了某个时候,你常常比导师更了解项目。有时你可以完全独立地测出数据并分析实验。而且,在完成研究生学位课程之前,你确实应该比导师更了解您的项目,因为是你做的项目。(这时)想法就会出现。而且你会思考的很好。我们为什么不尝试这种方式。很多都是反复试验和出错-有些事情会失败,有些事情会起作用。这是一个尽可能多敲开门的问题,找到打开的门的问题。这为你提供了一条打破现状并证明你可以自己推动项目的途径。

Peter [24:35] 

Spencer博士,谢谢您的建议,我真的很感谢您抽出宝贵的时间与我们讨论技术和科学发现的重要性,以及您如何建立自己的研究领域。再次感谢您。

Dr. Spencer [24:48] 

这是我的荣幸。谢谢你们的邀请。

Peter [24:59]  

将LED放置在肠道中作为临床治疗便秘的方法可能并不常见。但是,听了Spencer博士对他工作的热情,以及他关于坚持和相信自己的重要性的故事,我想,为什么不(能实现)呢?特别是如果我们可以限制副作用。也许在20年后,这种干预将成为常态,或者甚至看起来已经过时。无论如何,在这个瞬息万变的科学领域中,重要的是不仅要适应能力强,而且要坚定不移地坚持自己的信念。因为如果您不这样做,也就无法说服其他任何人。非常感谢大家的收听。有关我们的更多内容,您可以在Twitter @gutbrains上关注我们,或访问我们的网站thinkgastronauts com。没有我们在这里的优秀团队,就没有Gastronauts 播客。 Meredith Schmehl是我们的制作人和音乐作曲家。 Laura Rupprecht博士是我们的社交媒体经理。特别感谢Gastronauts Diego Bohórquez博士和Bohórquez实验室的创始人。

第三期:记忆调试法

张旭朏/译

Dr. Costa-Mattioli  [0:00]

(感觉)我正坐在一棵杏树上,[我]一直坐在南美洲的一棵大树下。

Peter [0:12]

那您认为您肠道中的微生物现在在想些什么呢?

Dr. Costa-Mattioli [0:16] 

他们没有办法思考,因为他们没有大脑!

Peter [0:19] 

那么您现在可以睁开眼睛或者摘下眼罩了。(您猜的)杏仁是正确的,那儿还有几颗坚果。 我选择“混搭”的原因是因为很多人认为我们可以通过吃某些食物来增强我们的记忆。 人们觉得核桃对记忆有益,蓝莓含有抗氧化剂,而黑巧克力则能够改善我们的记忆力。 但我想知道您如何看待用食物作为一种治疗方法来改变我们的微生物或者来增强记忆力呢?

Dr. Costa-Mattioli [0:47] 

我认为这是一个很好的选择。几个世纪以来,我们一直在讨论(如何)利用食物来治疗各种疾病的理念。 现在,我们有可能用不同的食物来治疗不同的疾病。 所以我认为这确实是个很好的途径。(然而)我们(对此)知之甚少,但它却又如此有趣。 你要知道,我的网站最后一个观点就是:可能考虑开发食物疗法,我们可以利用这种方法来调节特定的微生物群落,从而影响大脑或其他(调控)中心,这不仅仅与大脑相关,也可以提高人们的生活质量。

Peter [1:35]   

真的很酷。 人如其食嘛!

Peter [1:52]

大家好,我是Peter,本期The Gastronauts 播客的主持人。在Gastronauts,我们致力于理解人体的(内在)联系。 尤其是肠道与大脑的对话方式我们将深入研究优秀的科学家们及其工作背后的思想和动机,并希望通过了解科研背后的个人,来了解不同领域的科学家是如何思考以及为什么他们对自己的工作如此充满热情。 因此,请同我一起探索The Gastronauts 播客的内在秘密。

本周,我们邀请到一位记忆专家,他不仅揭秘了细胞用来编码记忆的通路,还发现了我们肠道中能够调节社会行为的特定细菌。 Mauro Costa Mattioli博士有着相当精彩的职业生涯。 他曾在乌拉圭蒙得维的亚的共和国大学学习微生物学,之后前往法国,在皮埃尔和玛丽居里大学(今索邦大学)学习,在南特大学攻读博士学位,在那里他主要研究了病毒免疫逃逸机制。 在完成博士学位后,他前往蒙特利尔的麦吉尔大学,在Sonenberg博士的实验室工作。在那里,他首次对记忆产生了好奇,特别是蛋白质合成在记忆形成中的作用。 那么,Costa-Mattioli博士,非常感谢您今天的到来。

Dr. Costa-Mattioli [3:43] 

谢谢你们的邀请。

Peter [3:44] 

我想问的第一个问题与记忆有关 – 记忆是我们生活中不可或缺的一部分; 它们非常强大; 它们是我们存在的核心,并且定义了我们的经验。 知道您是这个领域的专家,您能告诉我们,您和您的实验室(同事)是如何看待记忆的呢?它只是简单存储和检索用的吗? 还是有其他更多的作用呢?

Dr. Costa-Mattioli [4:04] 

我是一名分子生物学家,并且对形成记忆所需的机制很感兴趣。 正如你所指出的,记忆对于动物物种的生存至关重要。但同时它又是我们身份的核心。 因此,我们尝试着来鉴定那些关键组件,这些组件可使动物记住一个特定事件,这很有价值。 当我加入麦吉尔大学的Nahum Sonenberg实验室时,我们尝试着揭秘这些机理,现在它们已经成为了记忆形成的黄金标准或关键因素。

Peter [4:45] 

那您能给我介绍一些相关机理吗?

Dr. Costa-Mattioli [4:47] 

其实我们感兴趣的主要问题是如何将短期记忆转变为长期记忆。我们知道这个过程需要蛋白质的合成。实际上,这是为长期记忆“洗礼”的分子学过程。如果你要进行“洗礼”,那么长期记忆的蛋白质合成需一个必要条件就是具有分子长期性。但我们并不知道这背后的机理。当我加入麦吉尔大学的Nahum Sonenberg实验室时,我认为我来到了理想的地方可以尝试着解决这个问题。而且我决定改变领域,从病毒学和微生物学转向神经生物学。随后,我们发现了一种似乎有点像记忆形成的开关,即蛋白质合成的发生机理。如果你打开它,这时动物就会形成任何记忆,如果你把它关闭,此时记忆实际上已经受损了。在过去10年左右的时间里,世界上许多研究人员的研究工作建立在这些[研究结果]的基础上,并得以重现,而且进一步在啮齿动物,大鼠,小鼠,甚至小鸡中验证了这些研究结果,希望将来这些能为人体(研究)所用。

Peter [6:00] 

这真的很有趣。 我想稍微谈谈长期和短期记忆之间的区别。 您如何解释这两者之间的区别呢?是编码方式不同吗? 您提到了蛋白质表达对于长期记忆形成的重要性; 那对短期记忆又是怎样的呢? 是不是因为蛋白质形成的积累需要时间,故而具有长期特异性呢?

Dr. Costa-Mattioli [6:20] 

那么,我们所知道的是与此相关的“机械部分”具有合成蛋白质的能力,在短期记忆过程发生时它似乎不会被激活。 因此,你可以以一种非常简单的方式来思考(它),在长期记忆的情况下,你拥有这些蛋白质,而这些蛋白质的合成将为脑细胞之间更长时间的连接建立基础。然而,在短期记忆的情况下,你并不要求那些连接是稳定的,因为随着时间的推移,这些连接最终会逐渐减弱。 因此,(这也就是)短期记忆与长期记忆的不同机理。

Peter [7:05] 

也就是说,短期记忆不会变成长期记忆,它们在大脑中的编码方式是两个独立的过程。

Dr. Costa-Mattioli [7:11] 

其实,短期记忆是可以转化为长期记忆的,并且这些蛋白质的合成机制也是可以被激活的。 例如,在我们所做的一些实验中,我们为这些动物提供了短期记忆的训练方案。 而由于训练开始时蛋白质合成就在这些动物中启动,这个时候,短期记忆就可以转化为长期记忆。反之亦然,如果我们关闭(蛋白合成的)开关,我们也能够将长期记忆转化为短期记忆。

Peter [7:48] 

这真是太棒了。关于记忆,还有一些大众性的问题,我有很多尝试记住事情的经验,而且我很难记住一些我觉得应该记住的事情。另外一些时候,当我并不想记住某些东西时,它却突然出现在我脑海中。我觉得当我是一个积极的参与者而非被动倾听者时,我能够更好地记住信息。 例如,当我尝试解释我跟其他人学到的东西时,通过解释的这个过程就可以帮助我更好地记住这些信息。 这只是加强或重复的问题吗? 还是您认为这是社会行为的作用及其对记忆的影响呢? 还是我们对这种现象有更好的解释呢?

Dr. Costa-Mattioli [8:34]

我们可能有,但我也许还没有(答案)。所以我不确定我们是否能够回答这个问题。但是我们知道,当你更加投入并且更专注时,你确实不会分心。如果你会分心,比如,电视打开或有人在电话里和你说话,而你正试图去读一本书,信息存储到你大脑的路径就要少得多,因为你有行为学干扰,等等。另一种是我们有些记忆在某些情况下甚至不需要重复就可以非常有效地存储在大脑中。 这种情况要有一个非常强烈的情感因素(存在)。你要知道,如果你有一个非常强烈的情感因素,那么我们(潜意识里)知道我们需要重复。正所谓熟能生巧,不是吗?而且我认为这种训练(方式)是需要间隙的。并不是说你需要等到最后一天去复习考试并且彻夜未眠。 如果你选择提前几天开始,阅读它,多次重复,间隔(休息)一下,小酌一杯等等方式,这些信息被存储的可能性会大大提高。但对于那些有非常强烈情感因素的记忆,你只接收到一次信息,而信息就被存储了起来。(目前)我们还不太清楚这是怎么发生的。

Peter [9:48]

那么,情绪是在细胞水平上编码呢? 还是在大脑区域水平呢? 我完全同意(您所说的)更多的情感体验更令人难忘。 那您认为这是细胞与细胞之间的作用吗? 还是您认为某些大脑区域正在增强(这些)信号呢?

Dr. Costa-Mattioli [10:05]

我们有特定的区域,或者说这实际上最终会与另一个控制记忆形成的大脑区域有联系。 但是我认为这主要发生在通路或细胞级别。 我们需要弄清楚它是否是特定的通路,而最终将那些大脑区域与记忆区域连接起来。 所以,是的,我认为是通路的特异性决定了这些被激活的特定通路。 但老实说,我们对此还不是很了解。

Peter [10:39]

是的,所以具体来说的话。 您认为该领域仍然需要回答的关于记忆的一些非常重要的问题是什么呢?

Dr. Costa-Mattioli [10:46]

我想还有很多。其中一些是站在更加基础(研究)的立场,我想告诉你的是,我们知道新的蛋白质合成是记忆形成的必要因素已有五、六十年之久。我们不知道的是,这个过程所需的蛋白质子集是什么。我们也不知道这种合成蛋白质是否需要在神经元或不同类型的神经元(兴奋性或抑制性神经元)中发生。我们更不知道是什么让记忆变得破碎。 […]我们的重点一直是在努力增强记忆力。但删除的记忆也是非常重要的方面。而你找回的那些记忆变得破碎后,你基本上可以将它们删除了。我们能否发现某种机制来针对那些例如与PTSD(创伤后应激障碍)有关的不良记忆,并删除它们呢?因此,这就有这两种情况,增强记忆和擦除记忆。而[如果]我们能够从本质上发现与检索相关的机制,我们就可以帮助那些有认知困难的人。

Peter [11:55]

所以理解记忆的检索方面,除了记忆的抑制,基础生物学才是这些的基础。 感谢您与我们分享这些知识。 我想(继续)谈谈您实验室工作的第二个方面:了解这些肠道微生物或微生物组是如何影响大脑功能的。 而且我觉得这对您来说就像一个不错的回归。 我知道您本科学习的是微生物学。 然后,您现在再次对微生物组和微生物学进行研究,以及它们如何对大脑产生影响。 我想知道是什么促使您进军与记忆十分相关的微生物领域的呢?

Dr. Costa-Mattioli [12:34]

我会说这是个意外发现。我们原本不打算研究微生物组,我们项目开始时实际上旨在研究饮食如何影响行为。具体而言,推动该项目的积极因素是(我们)对小胶质细胞的兴趣。因此,让我们思考微生物组的一个特殊结果是,把那些有社会行为不足的动物(与接受高脂肪饮食的动物妈妈)与正常的动物放在了一起。当我们做那个实验时,我们进行了行为学测量,(发现)社交动物的行为(不足)完全消失了。换句话说,动物变得正常。在那个时候,我们开始思考饮食如何对微生物组产生影响。因此,仅仅通过观察这个假设,并检验这个假设,我们就会得到这样的惊喜:是的,有一种特殊的细菌可以通过妈妈的饮食来消除。最终,这种细菌是社会行为所必需的。因为如果你把这种菌放回到社交(缺陷)的动物身上,行为又完全正常了。因此,在我最疯狂的梦想中,我设想了这样的想法:我们的行为需要肠道中的特定微生物来逆转或影响,这是由大脑驱动的吗?现在,我们知道孕妇的高脂饮食,基本上可以改变后代的微生物组,即使在人类中也是如此。

Peter [14:01]

这真的很厉害,所以这些自闭症表型常见于肥胖母亲的孩子。 为什么您认为这个自闭症表型常常出现在婴儿身上,而不是母亲呢?

Dr. Costa-Mattioli [14:12]

这就像你应该知道的生活中的一切一样。你有一个特定的关键时期,大脑或者肠道,或者肠脑连接变得脆弱。如果你做高脂饮食操作的时候能想到这些,婴儿在子宫里,是它更脆弱的时期 (婴儿更容易受到影响)。如果你对成年动物做同样的处理,而这时突触连接已经形成(影响就变得很微弱)。 所以你对妈妈产生影响的可能性实际上更低。

Peter [14:45]

因此,神经网络在这一点上连线的更加紧密; 改变或受影响的空间更小。所以我想微生物组领域最近有了很大的进展,微生物组如何影响从抑郁症到肥胖症的一切,再到我们如何处理所服用的大量药物。您认为公众对微生物组有哪些最大的错误认知呢? 还有,您希望人们更了解这个领域以及微生物组对我们健康影响的那些方面呢?

Dr. Costa-Mattioli [15:13]

这是一个新兴领域,也是一个众人正在学习的领域。我们作为科学家,我们正在研究我们所学习的科学领域。这个领域,如果你认为它有点不可思议,如果在10年前或15年前,肠道中的微生物可能会影响我们的行为[…]这是无法设想的,不是嘛?而今天,你要知道,我们甚至有使用这些单一细菌菌种的想法,并且(研究它)可能在人类中产生的影响。因为这个领域正在兴起,我们开始了(研究),当然,我们了解到另一方面是那些患有自闭症孩子的父母,他们迫切的冲进超市,去购买任何一种益生菌,希望这些益生菌对自闭症有治疗效果。从我们自己的工作中,我们确实发现了一种特定的菌株,一个具体的特定效果的特殊菌株,实际上它是具有活性的,而其他的菌株不具有。如果你问我为什么会这样,我也还不知道。正在大脑学科工作的科学家们作为这些病症的主要驱动因素,他们受益于20-30年的研究。而且我认为我们需要更多的时间从本质上解决我们在这里所做的任何事情是否可以被转化或者可以应用于人类。到目前为止,我们在实验室里做的一切都是动物模型,我们研究的很开心。这是否会被转化为人类疗法还有待观察。

Peter [16:52]

所以说,如果我想改善我的微生物,现在所有在超市里做广告的酸奶和益生菌,并不值得我冲进货架?还是说现在还未得以证明呢?

Dr. Costa-Mattioli [17:03]

嗯,首先,我不知道,我的意思是,你购买的酸奶是有功能的,你或许可以改善你的微生物组。 他们说你可以更好地消化,或者你能减少便秘。 但是,这种情况下是否会影响大脑,我就完全不知道了。 所以,有些益生菌,也许它们可以帮助你,尤其是那些可以帮助孩子改善便秘的益生菌,它们显然可以缓解胃部不适,等等。 但对于大脑,我想我们还没有发现任何迹象。 我们仍然有待于观察这些益生菌是否可以作用于人类。 我们正在从一个完全不同的角度解决这个问题。 我们没有像其他人那样做。 这是一种不同的思考方式,也许如何治疗这种疾病,以及我们这样做是否有效或无效,我还不能回答。

Peter [18:04]

从不同的角度看待不同观点或解决问题在科学中有多重要呢?(如果)一位年轻的科学家觉得他们的想法很有激情,与目前的(研究)情况截然不同,您会给他怎样的建议呢? – 他们该如何实现这样的想法?

Dr. Costa-Mattioli [18:20]

这无关于[激情],或者是完全不同的观点。 答案是得到正确的答案。 但问题是我们不知道正确答案是什么,对吧? 那么让我着迷的是那些没有多少人会想到的想法,对吗? 哪个可能是对的[或]可能是错的。 但如果他们是正确的,这就开辟了一条完全不同的途径,在这种特殊情况下,你就可以解决脑科学的问题。 也许一些行为可以通过使用基于微生物的治疗来改善,而另一些行为则必须采用更传统的方法,该方法实际上将直接影响大脑。

Peter [19:06]

谢谢您的这些观点。 我想稍微转换到一些个人问题。 我知道您获得了许多奖项:Alkek试点项目和实验治疗奖(奖项名称); 您以打开和关闭记忆的文章获得了Eppendorf (生命科学公司名称)科学神经生物学奖; 并且您已经在Jeopardy(美国电视智力竞赛节目)上被提名了一个问题。 我想知道您最引以为傲的成就是什么?又是什么继续激励着您的研究?

Dr. Costa-Mattioli [19:34]

这是一个很好的问题,我每天也在问自己,坦率地说,到目前为止我不觉得我发现了什么。 我相信现在只是发现了一些东西,其中一些已经变得很重要,而另一些则没有,我相信这个时刻已经来临。 这些想法和概念激励我很早就醒来,让我很晚才睡下。 所以我绝不是[已经解决]了。 坦率地说,几天前我和某人聊天,我告诉那个人我真的觉得我做的不多,因为有些已经有很多大成就的人。 所以我想,我希望,会越来越好。

Peter [20:28]

很惊讶听到这一点。您做了那么多非常成功的事情,您有这么好的经历,我想知道您是否能想到研究生常犯的错误,或刚进入科学领域的人,什么是他们常犯的错误呢? 你会如何帮助他们解决这个问题呢?

Dr. Costa-Mattioli [20:47]

你知道有一些规则要牢记在心,不是吗?所以第一个是不要相信任何人。因此,当一名研究生来到实验室并开始研究一个项目,并相信该项目应该与另一名发表Cell或Nature(科学杂志名称)论文的研究生类似的方式工作,[但]你必须亲自验证并看到它。所以这是一个明确的事情,学生必须用你自己的眼睛看,如果实验一,二,三或四次不成功,这时你需要去倾诉,并告诉其他人或许自己的方式不正确,并得到所有的帮助,看看你是否可以建立自己的故事并继续这样做。另一个重要的事情是你要充满好奇,好奇心可能不仅仅是由你的导师所驱动。 [你应该被你正在做的生物学的一个特定方面所驱动,这却是你的导师没有想到的]。你需要去到办公室,然后说,伙计,我对这个感兴趣,因为这是一个比你告诉我要做的更重要的问题,对吗?所以这些是我对刚刚开始博士生的一些建议。永远不要气馁,永远不要气馁。这是一场马拉松,这不是冲刺,因为有些人可能是冲刺,但对于我们大多数人来说这是一场马拉松比赛。这需要时间。你的博士需要时间现在我正在思考这个问题,我会告诉你我认为更重要的因素。学习失败是更重要的因素。如果你学会失败,因为在科学中你每一天都会失败,每一天都是失败的。你做的大部分实验都不起作用。如果你学会失败,或者如何失败,或者如何应对失败,事情会变得容易,因为你不会沮丧,因为你知道!你知道一开始事情是行不通的。当实验成功时,它就是一份礼物。

Peter [22:56]

所以这一切都归结为 – 您说的第一件事是,不相信任何人,但相信自己的实验。 这总会导致很多失败。 重复其他人所做的事情并不容易,也许他们做的事情略有不同,也许他们想到的是他们没有在实验流程中写下的东西。 但是,通过这个过程,一点点学习。您认为对于科学家的成长以及他们在前进中应采取的一些行动,什么是必不可少的呢?

Dr. Costa-Mattioli [23:21]

认真对待它,因为你去做一个实验,你找到了一篇发表的论文,你一会儿就完成了,但实验没有用。 这是很容易的事情。 当然,它不会起作用,因为你没有优化它。 对于我们所做的每一个实验,我们都需要从根本上优化实验流程,找到特定的突破口,实验才[可以成功],让实验有机会获得成功。 是的,所以从你有一个强大的故事,你相信它的那一刻起,这就是你博士的起点。

Peter [24:12]

我在您的其他一些采访中看到你引用埃里克坎德尔影响到您深入研究神经科学领域的决定。 对于那些试图钻研略有不同的领域的人,您有什么建议? 我以前知道,您在病毒学和微生物学方面做了很多工作。 然而听了他的一席话,您觉得您的实验室真的很适合去了解驱动记忆的机制。 那么您如何从一个微生物学家,一个蛋白质实验室的人成为一个研究记忆的人呢?或者您对那些想要从事职业生涯的人有什么建议呢?

Dr. Costa-Mattioli [24:47]

正如我所说,我的意思是,回想起来,你要解决这个问题。但这种转变是有风险的。所以前几天我正在读弗朗西斯克里克的一本书,他在书里刚说到,在发现DNA(脱氧核糖核酸)结构之前,他只知道物理学。他完全不了解生物学,但他有能力转化为事物并将这些事物变为现实。因此,有许多决定要去做,也有许多窘境(corners),但你还是需要离开自己的舒适区。对于大多数科学家来说,当他们到了30-35岁时,他们已经成熟起来。将职业生涯转变为新方向的可能性非常低。就我而言,我对生物学很感兴趣。如果你来我的实验室,你向我展示让我兴奋的东西,我不在乎这会给我带来什么因为我感兴趣。那是我的快感。现在,在这个过程中,你需要了解这个领域并且学习很多。我这样做的方式是咨询并向该领域的专家学习,这是我在电生理学中可以找到的最好的,我能在行为中找到的最好的,并且与他们联系。

作为博士后,我走进他们的办公室,我告诉他们,这是我的想法,他们告诉我你疯了。没关系,因为它能帮助到我,他们没有听我的话,最终还是得到了回报。对于那种非常晚的转换,正如你所指出的,从记忆到微生物 – 大脑,对我而言,这就像是一种自然过渡,因为,我了解进化。我了解微生物学,并且在我的博士期间,我正在研究特定的选择性压力将如何影响病毒群体以及病毒如何逃逸。所以我觉得过渡是顺利的。但是我也有很多需要学习的东西,我有像杰夫戈登这样的同事,也有其他人,他们都是微生物组的专家,每次我有机会阅读他们的论文或在会议上见到他们,我都从他们那里学到很多。而且我认为这就是让我继续前进的原因:每天都在学习,所以我觉得我又像个学生。学习新事物。走向不同的方向。他们中的一些人很疯狂。其中一些更保守。但我认为这就是科学的意义所在。这就是我们在实验室里做科研的方式。

Peter [27:29]

很高兴看到您如何保持这种好奇心,保持这种激情,而且它并没有真正消退。 或者也许它已经存在,但是您已经把它和您一起留在了您从研究生到博士后到现在的日子里。 我想知道,只是最后一条建议,您可以给那些进入新领域的人,开始一个新实验室,第一次成为首席研究员,您会给他们什么建议来开拓他们的想法或者您如何看待他们可能遇到的一些问题呢?

Dr. Costa-Mattioli [28:01]

从我的一些导师成为导师,到我成为导师的那一刻,时代已经发生了变化。我们面临着巨大的资金压力,我一次又一次的看到,那些启动实验室的人,他们做的第一件事就是开始写项目书。当然[就是这种情况],因为他们想要有钱来开展他们的科研。当你开始实验室的时候,如果你最终进入像杜克这样的大机构,他们会给你足够的钱来做几年科研。这是我觉得很关键的时刻,因为你所要做的就是做你的科研并展示你的科学成果。第一年或第二年不用考虑项目资金。做你的科研。做你想做的更有趣的实验。如果你的实验很好,如果你如愿以偿,那么科研结果就会带来资金。这笔资金应该支持更多科研项目。如果科研做的好,那就会带来更多的资金。这就是我们所有人都进入的良性循环。从你进入的那一刻起,这个循环就不停了。但是在前两三年,你不在循环中,在你确定需要之前不要进入这个循环。

Peter [29:22]

我觉得很难不觉得自己不是这个循环当中。

Dr. Costa-Mattioli [29:25]

没关系,没关系。 你将是一个了不起的局外人。 不要担心钱而做你的科研。 而且我想你要知道,对于我之前讨论的一些人,他们只是告诉我,天哪,在前两年那会儿,我没有享受过自己做实验、指导我的博士后或学生的乐趣。 他们如此投入。 我理解这种压力。 压力很大。 资金实际上很少。 我们有很好的科学想法,不幸的是,一部分好的科学项目并没有得到资助。 所以我真的希望像美国国立卫生研究院,政府,国防部等这些机构增加支出来支持那些很好的项目,因为我们还有其他国家,比如中国或韩国,它们在科研中投入了大量的资金。我想我们在美国的创新仍然是最重要的,但我们需要将其保留下来。

Peter [30:26]

我们仍需继续努力。非常感谢您的宝贵时间,Costa-Mattioli博士。

Dr. Costa-Mattioli [30:30]

这是我的荣幸。

Peter [30:40]

从记忆到微生物,我们有机会看到Costa-Mattioli博士如何不让自己被一个特定的领域所定义。这是一个没有放弃的有趣发现,引发了他的好奇心,使他很容易进入新的领域。我觉得我们应该采取这种心态,并尝试每个月投入一点时间来反思我们所做的事情来让我们感到兴奋。甚至有可能的情况下,将其写下来或与某人分享。如果没有想到任何事情,也许是时候重新思考我们的工作方法了。只是想一想,下期再见。非常感谢您的收听。有关我们的更多内容,您可以在Twitter @gutbrains上关注我们,或访问我们的网站thinkgastronauts.com。没有我们在这里的优秀团队,就没有Gastronauts 播客。 Meredith Schmehl是我们的制作人和音乐作曲家。 Laura Rupprecht博士是我们的社交媒体经理。特别感谢Gastronauts Diego Bohórquez博士和Bohórquez实验室的创始人。

第二期:跨越无极限

张旭朏/译

Dr. Wickersham [0:00] 

我相信你Peter。

Peter [0:03] 

如果让您用一个词来形容它。

Dr. Wickersham [0:06] 

面包似的,我觉得像是根热狗。 但觉得我只吃到了面包。

Peter [0:15] 

好吧。 您现在可以睁开眼睛了。 这是无麸质面包热狗(我们确定)。 我想我们最终选择热狗的原因是,我们觉得狗与狂犬病有关,所以我们能找到与此最接近的食物,于是想到了热狗。

Dr. Wickersham [0:31] 

太赞啦!

Peter [0:41] 

大家好,我是本期The Gastronauts播客的主持人Peter。 在Gastronauts,我们将致力于理解人体的(内在)联系,尤其是肠道与大脑的对话方式。 在本期内容中,我们希望更深入的研究优秀科学家们及其工作背后的灵感和动机。 我们希望,通过了解科学背后的科学家们,我们将能够跨越不同科学领域之间以及科学界与主流文化之间的鸿沟。 那么,让我们一同进入本期播客:两个领域之间。

我们非常高兴今天邀请到Ian Wickersham博士。 伊恩(Ian)曾在杜克大学(Duke University)攻读物理专业,然后在加州大学圣地亚哥分校(UCSD)取得了神经生物学博士学位。 之后他在麻省理工学院做博士后,现在是麻省理工学院遗传神经工程小组的负责人。 他致力于开发强大而精确的技术来研究大脑的结构。 他利用病毒的独特功能,对它们进行了修饰,使这些病毒可以感染特定的细胞并发光,从而使我们的大脑网络可视化。 他修饰过的其中一种病毒便是狂犬病病毒。 老实说,当我第一次听说使用狂犬病病毒作为工具时,我想到了一张[…]看似有些疯狂的狂犬病狗狗的画面。 我想知道,[…]您是如何被狂犬病所吸引的呢? 是不是需要一些说服力才能让您对这种令人恐惧的病毒进行研究呢?

Dr. Wickersham [2:40] 

其实不然。其实我是很积极地想对它开展研究,因此我不得不说服其他人,而不是相反的情况。但是关于狂犬病病毒,尽管这种可怕病原体每年都会杀死许多人,但它对于神经科学家来说是一种非常有用且自然存在的工具。因为它的扩散发生在突触连接的神经元之间。它在神经元之间的传播方式在相当长的一段时间内不会完全杀死神经元。当我开始攻读博士学位时,我们正在寻找识别大脑中连接神经元的方法。因为大脑中的神经元具有许多不同的细胞类型,而且它们都混合在一起,它们经历了这些漫长的过程,所以轴突和树突会发生重叠。即使你让不同类型发光或对它们进行染色处理,也无法仅仅通过观察来分辨它们。更无法确定哪些是彼此相连的。与其他器官相反,神经元之间的精确连接基本上可以说是大脑最独特的方面。那么,了解大脑如何运作或大脑的一个小部分如何运作,了解与你感兴趣的行为有关的神经元之间如何相互连接(显得)尤为关键。因此,我们需要一种工具,这种工具可以帮助我们识别与目标细胞相连的其他细胞,而狂犬病病毒则是最有希望(实现这些)的工具。

Peter [4:29] 

这相当有趣。 您提到的狂犬病(毒),更像是一种工具,而不是病原体。 您的实验室实际上专注于开发(这些)工具和原型,并修改这些病毒,以便我们可以应用它们来研究不同的回路和不同的连接。 我想知道,当我们开发这些工具时,会经历一个迭代的过程,在此过程中,您会经历原型一或第一代,第二代,第三代。 您怎么知道这个就是第一代了呢? 当您构建完结构后,您又怎么知道这就是一种我们可以提供给其他人或让其他人知晓的工具呢?

Dr. Wickersham [5:06] 

那么,到第一代发现为止,没有其他的(发现)了。一旦有了基本的证明,我们就可以做到这一点,我应该说,我们试图发明是一种专门标记直接连接到某个目标神经元组的系统。 因此,基本上,我们利用改良形式的狂犬病病毒选择性地感染大脑中任何类型的神经元,并使狂犬病病毒不会像野生型病毒那样扩散到整个大脑,而是只传播到与起始神经元群体直接进行突触连接的细胞。

Peter [5:55]

因此,您可以控制其传播方式的特异性。

Dr. Wickersham [5:58]

实际上,我们控制着两个方面,一方面是(控制)首先要感染的细胞的特异性,另一方面是控制它要经过突触的数量。如果注射到大脑中,自然条件下的狂犬病病毒基本上会感染它所能接触到的任何神经元。 而且,一旦感染了这些细胞,它将沿逆行方向扩散,即从起始细胞到突触前细胞。

Peter [6:29] 

突触前意味着它在上游形成连接。

Dr. Wickersham [6:33] 

是的,对细胞而言,这会将神经递质释放到起始细胞上。 野生型狂犬病病毒将在这些细胞中简单复制,并继续向突触前细胞扩散,周而复始,遍及整个大脑。 而我们想要一个仅允许直接标记突触前细胞的系统,以便我们可以非常精确地识别大脑中细胞类型之间的连接矩阵。

Peter [7:01] 

所以有点像一种被控制了的狂犬病感染。

Dr. Wickersham [7:05] 

是的,这是能够做到这一点的第一代系统。 当然,只要有任何类型的数据,我们就可将其发表,就像在神经科学领域一样。 一旦有了新颖的成果,并且从未有人展示过,即使它并不完美,你也想展示给大家。 所以,无需等待完美时刻,只需发布每个重要的新进展即可。

Peter [7:30] 

但同时,您也要确保狂犬病的毒性或致死性得到控制。

Dr. Wickersham [7:36] 

确实,狂犬病毒的毒性可能是其最大的缺点。它的毒性确实比许多其他病毒低。而其毒性较低的原因是狂犬病毒希望保持神经系统细胞的完整性,以便宿主(即被感染的动物)能够继续传播该病毒。基本上而言,病毒的生命周期取决于在传播过程中不被破坏的神经系统,以便动物有能力实施这种行为,从而导致病毒传播。所以,这种病毒已经相当于无毒。但是在神经科学领域,有很多人想做的实验涉及很长一段时间的操纵或研究,而不仅仅是几天或几周。例如,在学习一项任务的老鼠中,(老鼠的行为)会随着时间而发展,并且人们希望了解随着老鼠学习这项任务时,神经元的突触连接网络是如何随着时间的推移而反应的。对于狂犬病病毒已经存在的地方,或者是已经存在的狂犬病病毒系统,这基本上是不可能实现的,因为它确实杀死了神经元。所以,近年来,我的实验室付出了巨大的努力来开发所谓的模型突触追踪系统(狂犬病病毒追踪系统)的无毒版本。

Peter [9:13] 

单突触追踪系统有点儿像是只跨越了一个突触,是吗?而且不会持续扩散,这就是您如何控制毒性的方法吗?

Dr. Wickersham [9:17] 

嗯,这就是我们控制病毒传播的方式,但这并没有直接影响病毒本身对被感染细胞的毒性。 因此,在我们正在进行的第二代以及现在的第三代版本中,狂犬病病毒似乎是完全无毒的。这意味着我们可以标记突触前细胞,然后让它们无限期地存活,以便可以进行长期行为实验的研究和操作。

Peter [9:52] 

所以我了解到的您的第一代(病毒系统)的情况是[…]您已经提出了这一愿景,您希望能够标记(神经)通路,而且您找到了实现这些的方法。 它毒性适中,毒性相对较低。 然后当您进入第二代时,您实际上是在专注于我们如何才能将这种毒性降低到几乎为零? 然后我们如何才能使该标记保持不变?对吗?

Dr. Wickersham [10:16] 

是的,完全正确。我的意思是,第一步是(如果可以这样说的话)向前迈出的一大步,因为从根本上讲,这仍然是识别与你所感兴趣的某些大脑种群直接相连的细胞的唯一方法,而没有一个可以进行测试的假设。举例来说,假设你对膜的多巴胺能细胞感兴趣。这些是投射到(大脑)皮层的细胞,取决于细胞,纹状体和大脑中的其他位置,对于机动、反馈和运动控制而言,它们非常重要。(它们)能够识别出膜中那些非常重要的多巴胺能神经元的输入,可以使神经科学家绘制出整个电路来操纵各种输入,并了解有关如何将大脑关键系统或可能更适当的系统整合在一起的一些基本知识。现在,所遇到的第一个问题是这些细胞是什么,它们在哪里?因此,第一代狂犬病病毒系统只是为了回答这个。解剖学方面的问题是:这些细胞是什么,存在于哪里?无论它们在大脑中的何处,都可以对其进行标记。因此,在继续进行解剖学定位之前,也许可以用其他方法操纵突触前细胞。

Peter [11:48] 

那么,真正使这种狂犬病(病毒)强大的是您所能达到的那种(成像)分辨率,对吗? 因为我以前对神经生物学的理解是我们拥有这些大脑区域,所以我们知道它们是拟人化的,可以互相交谈。 但具体来说我们不知道在这个大脑区域中,哪个神经元正在与另一个神经元对话,对吗? 而狂犬病病毒使您能够查看两个细胞之间的这种直接联系。

Dr. Wickersham [12:12] 

没错,很正确。如果没有狂犬病毒或其他多种示踪剂,人们可以做什么,而人们在此之前所做的就是看到大脑中有哪些细胞投射到大脑区域。但是,采用这些技术中的任何一种,都无法查看这些上游神经元投射到了目标区域中的哪些细胞。因此,你基本上可以以高分辨率来追踪映射到大脑某处各个地方的细胞。但是在狂犬病毒系统出现之前,还没有办法确定该靶位中哪些细胞与所有这些突触前神经元发生接触。因此,我们可以使用狂犬病病毒来选择你所感兴趣的细胞,将输入(信号)针对性地传输给这些细胞。而且它们本质上是不同的,在大脑的每个地方,都有许多不同的细胞类型,并且它们的电导率也大不相同。因此,从本质上讲,你可能在特定大脑区域中投射到一种或多种皮层细胞的神经元数量上存在差异。或者,你可能具有完全非重叠的细胞类型,例如,这两种细胞都为突触前细胞。这使你能够以更高的分辨率绘制电导率图。

Peter [14:00] 

是的。就像是,即使在空间上相近的神经元,也可能不是我们正在研究的这个(神经)网络的一部分。(稍微动一下脑子)。 您如何看待这项技术的未来前景呢? 我觉得结构掩盖了功能,而且了解这个网络对于我们真正了解大脑的工作方式非常重要。 我想知道我们(对此)能了解到什么地步? 您如何看待我们对这些网络的认知? 或者,您认为我们如何在未来10年左右的时间内通过新技术更好地揭秘这些网络?

Dr. Wickersham [14:32] 

是的。一方面来讲,(这)能够更好地了解那些突触前细胞,而不仅仅是它们的位置,外观、表达等等。因此,如果可以使用所有这些方法的无毒版本,对突触前神经元进行模式化刺激,以使其能够干扰这些突触前细胞的活性,并观察其如何影响这些靶向突触后细胞的活动。狂犬病毒不仅可以利用输入(的信息)追踪到一组神经元,也可以追踪到是单个神经元。这可以为开始输入(信息)到单个皮层神经元提供漂亮的解剖图,但是你可以在这些突触前细胞中表达钙指示剂,并将其进行成像。例如,所有这些突触前细胞的视觉反应特性以及单个目标突触细胞,然后查看(例如)视觉皮层中的神经元是否以某种方式对视觉刺激做出反应,是否主要从其他以相同方式做出反应的神经元获得输入(信息),或者它是否正在做某种可能更有趣的事情。换句话说,要回答这个我认为是神经科学最基本的问题之一的问题,(需要弄清楚)单个神经元如何获取正在获取的输入并处理该信息以产生自己的输出?

Peter [16:02]

那么,我所了解到的是(这些研究都)正在向前发展,您认为应该在单细胞水平上理解这些信息,我们要如何整合信息,更多地了解这些神经元如何在单细胞水平上整合信息,以及他们如何获取信息,整合并发送信息的呢? 通过突触传递到另一个单元格的消息,这是您所预见到的这些技术的未来发展方向吗?

Dr. Wickersham [16:23]

是的,我想这是一个非常伟大的目标,也是一个激励人心的目标。 就技术本身的未来发展而言,我们应该很快就能开发出一个高效、完全无毒的单突触追踪系统,并利用此系统来进行这类实验。 我的意思是,到那时,各行各业的神经科学家都可以使用该技术,并应用到他们想要进行任何令人兴奋的科学研究。作为工具开发人员,我们正在继续开发其他工具,这些工具将有望来支持其他令人兴奋的科学研究。

Peter [16:55] 

现在,这确实是令人兴奋的进展,我迫不及待地想看到您课题组未来的工作进展。 现在我想微微倾向于您个人作为职业发展中的科学家来提问。从物理学转向神经生物学是一个巨大的跨越。 那么,我很想听听您是如何从一个领域的学生转变为另一个领域的研究人员的呢?

Dr. Wickersham [17:23] 

我的意思是,就我个人而言,我一直对大脑很感兴趣,而不一定对神经生物学感兴趣。但更多的是从想了解它是如何工作的角度来看的。我也一直对物理学感兴趣,我很喜欢它,那也是我大学的专业。但是我也对大脑感兴趣,并在杜克大学学习了神经生物学。不过,我是从神经网络的角度来思考的,这就是我的动力。所以我在想,我们怎么才能建立大脑呢?所以现在,我想大多数人可能都进入了神经科学领域,以了解整个大脑为目标,来揭秘意识是如何产生的,或者制造了可思考的机器人,诸如此类的事情。然后你便进入了神经科学领域,就像,“好吧,好吧,你实际上可以做的是……” [什么]可能是一条更直接的路径,可用于我们以前思想概念的架构的实际构建。但是进入神经科学领域,我的动机只是想尽可能多地了解大脑的组织架构。

Peter [18:28] 

大脑又是如何的呢? 仅仅是这样一个知之甚少的神经网络吗? 还是因为我们对此不太了解呢? 又是什么吸引了您走向大脑的呢?

Dr. Wickersham [18:37] 

哦!我只是觉得智慧很神奇。而且,你要知道,这看起来还可以,我们应该能够制造出能够执行此类操作的仪器。所以,这确实是动机。我最好还是先从我们对大脑的认知开始(讲起)。那么,我最终加入了一个博士计划,但是事实证明,我们并不太了解它实际是什么,有点像是半杯水,或者是99%的空水杯。但是实际上,我们必须懂得很多,但这基本上就是我的轨迹,我是从神经网络的角度,兴趣和构造,智能程序和体系结构等等来进行研究的。但是[当我]进入实际的神经科学领域时,我才意识到我想了解的-这些信息并不存在。从我的角度来看,对于初学者来说,我想知道的是,所有这些不同类型的[…]细胞之间的联系是什么?它们之间有什么联系?他们在做什么?还有了解所有为止的工具是什么?

Peter [19:45] 

然后,您决定自己制作!

Dr. Wickersham [19:46] 

是啊。就我可能产生的影响而言,[…]这似乎是很大的一笔经费,这并不是使用现有的工具费力地研究大脑中的某些回路并获得某种关于该回路的不完整答案,而是要开发工具,这种工具将允许在大脑任何方面工作的研究者们进行更强大、更精确的实验。

Peter [20:19] 

是的,我刚想到的是,您的研究确实集中在突触标记上,或者首先,这种单突触标记是如何从一个细胞跳到另一个细胞。 我当时在想,[…]这种方式使我想起人们是如何从实习生成为导师的。 因此,您是如何从成为科学家,学习神经生物学,学习这些神经回路,到成为该领域的开拓者这一转变的呢? 您是否可以[…]跟(正)从见习生过渡到导师的科研工作者们分享一些经验或心态呢?

Dr. Wickersham [21:00] 

那么,我想我在尝试开发这些用来大大提高那些基础神经科学家对(神经)回路进行研究的工具时,始终将重点放在了与他们相同的位置。 所以我的意思是,这有点像博士学位中的驱动特性,并且贯穿始终,这都是一回事。 只是现在我可以做更多的事情,因为我不必自己做所有事情。 那么,可以肯定的是,它是一个不同的角色。 但是类似地,如果你能制造允许其他人揭秘大脑事物的工具,那么与你仅仅使用现有工具自己进行研究相比,将会发现更多的信息。 同样,如果你有想法,并且可以将其委托给你的同事,则可以完成很多工作。

Peter [21:55] 

那么,从我的理解来看,当您刚开始对研究感兴趣时,当您还是一名学生时,对探索网络的工具的迷恋就是您的动力。 但是,随后,当您尝试研究这些(神经)网络时,您意识到需要建立自己的合作网络,以协助开发此网络。

Dr. Wickersham [22:15] 

在整个过程中,我一直在同一个实验室中向导师,博士后学习。

Peter [22:20] 

而您是如何寻求这种帮助的呢?您是否只是看看该领域有谁,然后与他们联系呢?

Dr. Wickersham [22:25] 

这是一种非常好的方法。 事实是,无论你身在何处,他们都遍布各地。 您想找到他们。 可以肯定,在Salk(研究所),MIT或Duke之类的地方,很容易找到乐于教您的世界一流人才。 我认为大学之间的合作程度不同,但是我很幸运,人们乐于为你提供帮助。

Peter [22:51] 

真的很高兴听到这样的信息,科学是如此博大,因为我记得[…]回到[我们之前的对话],您在想,哦,当我发现某些东西时,我真的需要发表出来。 这是一种竞争意识,在您的研究所内或研究所之间拥有一群真正愿意为您提供成功的动力并有动力为您提供帮助的人,这对您而言至关重要。

Dr. Wickersham [23:18] 

对的。 对的。 而且几乎总是双赢的。 这是唯一真正有效的合作方式。 通常,这是一次学术合作,如果有大量帮助,他们将在这项工作中获得一些荣誉,在许多情况下,他们可以使用该技术或应用到自己的研究工作当中。 人们在这样的结果中担当重任,然后他们会更有动力提供帮助。

Peter [23:42] 

是的。 因此,在建立合作时,您要确保对双方都是双赢的,对吗? 也就是说,我们双方都可以推进自己的工作,以推动该领域的发展。

Dr. Wickersham [23:51] 

通常,人们在发表的文章上享有著作权。 而且,如果该项目令人兴奋,则足以成为具有高影响力的研究文章,只是以这种通俗的形式,那么[…]参与该项目的开发也符合他们的利益。

Peter [24:10] 

真的很棒。我真的很感谢您抽出宝贵时间参加本期播客。 威克瑟姆博士。 哦,我认为我们从科学中了解了如何在大脑中建立联系的知识,并再次非常感谢您的宝贵时间。

Dr. Wickersham [24:23] 

这是我的荣幸。 也非常感谢你。

Peter [24:34] 

好的,就到这里吧。 当您花时间了解了您的同事时,形成合作网络就(变得)很容易。 我们向您提出一项挑战。 (那就是)在下一个午餐或研讨会上与大厅里的人或坐在您旁边的人分享您的想法。 非常感谢您的收听,我们将在下一期与您相见。 有关我们更多的内容,您可以关注我们的Twitter @gutbrains,或访问我们的网站thinkgastronauts.com。 没有我们在这里的优秀团队,就没有Gastronauts 播客。 梅勒迪斯·施梅尔(Meredith Schmehl)是我们的制作人和音乐作曲家。 Laura Rupprecht博士是我们的社交媒体经理。 特别要感谢Gastronauts的创始人:Bohórquez实验室的Diego Bohórquez博士。

第一期: 拥抱不可能

张旭朏/译

Peter [0:00]

您感觉如何,谢丽尔? 您觉得是什么呢?

Dr. Nickerson [0:04]

它可能是一种甜点,似乎里面有某种奶油,但总体上比较干燥。 我会说中等甜度,不是很甜,但有点甜味。

Peter [0:16]

如果非要让您用一个词来形容它放到您嘴里时的感觉呢。

Dr. Nickerson [0:23]

我想用一个连字符词汇:半-甜-干[…] 哦,这是个两连字符词汇。半-甜-干。

Peter [0:29]

现在您可以睁开眼睛了。

Dr. Nickerson [0:32]

是月饼! (看来猜的)还不算太离谱。

Peter [0:37]

太空,月亮,饼,我们试图将它们融合在一起。

Dr. Nickerson [0:38] 

很棒,很棒。 我没想到这一层。 太赞啦!

Peter [0:54] 

大家好,我是本期The Gastronauts 播客的主持人Peter。 在Gastronauts,我们将致力于理解人体的(内在)联系,尤其是肠道与大脑的对话方式。 在本期内容中,我们希望更深入地研究优秀科学家们及其工作背后的灵感和动机。让我们一起来到Gastronauts播客:探索科学家们的肠道情怀。

在首期播客中,我们非常高兴邀请到亚利桑那州立大学生物设计学院的Cheryl Nickerson博士。 Cheryl的研究重点在于太空、微重力和物理作用力对细菌和细菌病原体的影响。她曾与NASA(美国国家航空航天局)合作,在航天飞机执行任务时携带了细菌,并且研究了这些细菌在外太空条件下的改变。 Cheryl,欢迎您。

相信您从您的研究中获得了很多成果,我想问您的第一个问题是,什么吸引您进入太空领域的呢? 您如何决定将太空环境用于细菌研究?

Dr. Nickerson [2:24] 

这是个很好的问题,我以前也同样问过自己。 对了,顺便说一句,谢谢你们邀请我参加本期播客。 这是一个你永远不知道自己的生活会走向何方的故事。当时我在研究生院攻读微生物学博士学位,当我读到最后一年的时候,有个新学生加入这个项目,他那时已经获得了德克萨斯大学的工程学学位,而他却来攻读微生物学的博士。 我们很快成为了好朋友,我也立刻被他如何将微生物更多地看作是回路(这种思维方式)而着迷。 他总是像工程师那样进行分析(思考)。 而我对微生物却有完全不同的看法,因为我有传统的生命科学背景,并且(都是)信号转导机制。 这都非常复杂。 并没有100%的黑与白,而是一个灰色地带。而他非常注重数学。

直到今天,我们一直是很好的朋友。 我们一直在合作; 一直共同发表文章; 我们也一起拿到了项目资金。长话短说的话,在博士后期间,我开始在细菌病原学领域任职,主要研究食源性病原体沙门氏菌,研究它如何与人体肠道细胞相互作用以及它如何与肠道样动物模型小鼠相互作用,引发疾病。 而他去了美国宇航局约翰逊航天中心,开始在他们的微生物学小组工作。从而他参与了国际空间站航天飞机中空气和水系统中微生物的采样。 他是一位出色的微生物生理学家。

随着时间推移,他现在成为了约翰逊航天中心微生物学的负责人。而我在博士后阶段之后,掌握了细菌,尤其是肠道细菌病原菌的发病机理,并且知道如何培养肠道细胞、感染小鼠从而研究肠道与病原体的相互作用。在我启动了第一个实验室一个月后的一个晚上,也就是我在新奥尔良的杜兰大学医学院任职的第一个职位,而他在美国宇航局约翰逊航天中心(NASA JSC),他在电话中对我说:宇航员在太空中(开始)免疫力下降。由于我现在的专业专长是传染病,我说,稍等片刻,因为这只是感染后是否会患疾病的一半方程式。仅仅因为你被感染并不意味着你会罹患疾病,不是吗?它取决于病原体的毒力,病原体的剂量以及你(身体)的免疫反应。因此,你要知道太空飞行对该方程另一半的影响,即免疫反应。您知道些什么吗?(或者)是否有人知道航天微重力环境对病原体毒力能力的影响吗?

其实,没人知道这一点,所以这就是合作的开始。 我们进行了基于地面的实验,这些实验有力地表明了太空飞行(中的)培养可能会影响病原体的毒力、应激反应及其基因表达。从而(我们)进一步进行了多次太空飞行实验,这些实验进一步表明并证明了微重力环境太空飞行确实增强了病原体的毒力。这种病原体的确改变了它的基因表达,并且改变了它的应激反应。 我们将这些发现用于许多不同方式的机理研究中:我们发现,在航天中,其他细菌病原体可以使用与沙门氏菌类似的信号传导机制,我们也找到了在飞行中关闭毒力增强的方法。这也引导我们在相同种类的物理作用力下进行了三维细胞培养。

Peter [5:49] 

在我看来,这些(灵感)很多都是您与完全不同领域的科研工作者一起工作而产生的。曾经研究过工程学背景的人正在从更数学的角度思考系统的功能,而您的加入,带来了您在微生物学和毒力方面的专业知识。这似乎是一场完美的(头脑)风暴:他在NASA任职;他研究了宇航员的免疫反应,然后您对细菌有所了解,并且知道如何使免疫系统与细菌相互作用,这对于我们了解人类健康的未来发展至关重要。我想和太空开个玩笑。您是如何决定“啊哈”(关键)时刻的呢?就像,这就是我要走的路?您有什么顾虑吗?您是否因为微生物不在太空中频繁研究而对微生物发病机理方面有所顾虑呢?(例如)我没想到能将这些微小的微粒(微生物)送到太空呢?您是如何坚定这种信念,决定研究空间(生物学)的呢?

Dr. Nickerson [6:48] 

首先,我要感谢美国宇航局为这些研究所提供的经费资金。 因为我一开始是向NIH(美国国立卫生院)提出了这些研究(项目),我想,当时这项目已经超出他们想要资助的范围。 所以我要谢谢他们,因为这促使(我们)进行了一系列卓有成效的实验,这些实验已转变为现实,不仅对飞行中的宇航员有益,减轻他们的传染病风险,也与地球上的(生命)健康直接相关。 一个完全符合逻辑的问题是:为什么-我和我的同事们都知道-为什么在世界上,谢丽尔(Cheryl),你会认为你将通过在微重力下进行微生物学来学习某些新知识,或促进传染病的某些方面呢? 我的意思是,(这种情况下)生命没有进化的吗? 对于地球恒定的一种力量就是重力。

这是使你思维受到限制的逻辑方法,而我的大脑则受到了不同的影响。 因此,我对自己说,当大大减弱自行星诞生以来一直存在于地球上的一种力量时,你为什么不去学习有关生物系统、微生物、人类细胞的新知识呢? 生命在单位引力的作用下进化,而我们对其他的一无所知。 为什么我们不思考一下,当大大减弱这种力量时,这些与健康或疾病相关的新兴表型特性是否可能会出现呢? 我们了解到,当我们研究极端环境下细胞和生物系统的反应时,我们会得到更多信息,也会得到更多有关细胞如何进化、适应和反应的机制。 对我来说,太空飞行只是下一个极端环境,其潜力才刚刚被挖掘出来。

Peter [8:33] 

这我十分感兴趣,尤其是作为一名正在发展的科学事业的年轻人:在不了解将要发生的事情的情况下开拓未知领域时,我想在进行研究时肯定会遇到很多困难。 当尝试纠正一切错误之后,你的结果对你来说还是变得毫无意义,这很容易使你陷入困境,并且有时会失去(前进的)动力。 我想知道,在这些困境中时,您是如何继续激励自己的呢?在这种情况下,您又是如何激励您的学生和学弟学妹们的呢?

Dr. Nickerson [9:08] 

首先,你必须要有一点点反抗(精神)。而且,当每个人都告诉你(停止)时,你必须要有反抗。每当你开拓创新,进行范式性变更研究,发现别人未曾见过的事物时,你都会听到很多人说“不可能”。没关系,(要学会)拥抱不可能。事实上,我是一个喜欢听“不” 的人,一开始并不喜欢听,你写的项目书“不行”,您发表文章的手稿不行。没关系。 如果你不能听“不”,也就无法在这个领域中解决“不”,那么这个领域就不适合你。“不”激励了我,因为我知道我们正在做的工作是极好的,因为我了解这些团队-我了解我的团队,我也了解我的实验室,我知道我们与之匹配的团队都是优秀的科学家。这并不意味着我们的每个假设都是正确的,这些假设可能是对也可能是错的。我们知道我们的科学(问题)是好的,并且我们相信自己所做的事情。我们相信我们的科学;我们相信彼此。而且我们知道我们(走)在正确的轨道上。

我保存了每份手稿、每份项目资助书中的每份拒绝意见,而从早期开始我就有两份。我不会告诉你他们来自什么资助机构。有人说,我们有单层,我们不需要3D组织模型。你对3D组织模型的细菌发病机理一无所知。好的,我们可以将其从清单中剔除,因为这只是激发您的动力,不是吗?所以在我们帮助诞生了这个领域的20年后,现在这成了一个非常热门的领域。这很棒!但是科学需要时间。这就是所发生的。我们提交的第一个项目经费申请书是研究:细菌在摇瓶中以350 RPM的速度生长和与在实验室静态生长(这是大多数人培养细菌的方式)的相对比时,生理流体剪切力如何将细菌完全重新编码的。我也收到了第一封拒绝信。它说这项(研究)是不合理的。没关系。现在,传染病的力学生物学已成为一项很酷的研究,这是一件令人兴奋的事情,而且这很好,[接受]拒绝信是关键。如果您保持专注、下定决心并坚持不懈,您最终将会成功。您必须有胆量去进行那场战斗与大火相抵抗的战斗。然后你付诸行动。

Peter [11:17]

真的受教了。 (要学会)接受“不可能”。

Dr. Nickerson [11:23] 

其实您不必一定要喜欢它,这只是来激励你。 最终益处的是,你可以让所有这些兴致勃勃的年轻科学家们产生新颖且有创意的想法。 我从我所敬仰的一位科学导师那里学到了非常重要的一课。我总是会告诉我的学生,她所说的一句话。 她说:“不要自大。 因为当你以为自己什么都知道而其实不然时,狂妄就杀死了你的好奇心。”我认为这是一个美丽的陈述。 每个科学学科都有很多东西要学习。 有许多新现象需要被发现。 一个实验室,一个课题组,一个团队不可能全部拥有它们。 每个人也都有自己的空间。 那么,要接受这点,不要认为你已经学到了一切。 因为这是不可能的。

Peter [12:31] 

到目前为止,您告诉我的所有内容都很有意义。 科学是在有趣的情况下完成的。 我认为,始终要根据前后因果来实现-我们想看看我们可以创建什么样的环境来给(所研究的)系统施压,然后看看会发生什么。但是我很想指出的一点是,当有人打电话给您并说太空可能很有趣以及它如何影响细菌时,您的第一反应是什么呢? [是刚好]恰逢时刻出现在您的脑海的呢?或者,(您想)这(刚好是)我可以融合在一起的东西的呢。

Dr. Nickerson [13:00]

使用微重力平台来研究/鉴定新的生物学特性、现象、细胞反应、分子/遗传表型的整个概念对我来说似乎并没有不合理或惊讶-使用微重力平台来做研究似乎非常令人兴奋。但是你要知道,这可能是错的。 我们可能发现不了任何差异。 当我第一次获得用于资助这项研究的项目基金时,对我来说这并不是关键时刻的到来。 而当我们拿到结果并分析数据陷入僵局时,关键的时刻才真正到来,因为那才是真正令人激动的时刻。

我们能够模仿某些在微重力条件下发现的现象,并采用一些特殊的方式在类似于某些地面微重力的条件下培养细胞。他们虽无法模仿一切,但可以模仿我们在飞行中的一些关键发现。所以我们知道这不仅仅是一些现象-我们首先非常兴奋,因为我认为,哇,我们将帮助宇航员保持健康了,对吧?我们对此感到非常高兴,谁又不会呢?但是,当我意识到细菌随着引力变化而更新或进化并不合理时,这对我来说就没有意义了。我是说,这(种现象)对我来说并不合理,这种力的变化必须类似于他们在地球自然生命周期某个地方遇到的另一个物理环境。因为他们演变成这样是不合理的。事实证明,我们的证据表明它们并没有对重力减小做出直接反应,而是直接对减小流体剪切力做出反应,其程度与它们在组织中遇到的程度非常相似。当它们影响我们时,对我来说,就是一个关键时刻。然后,我们意识到,哦,天哪,我们在微重力平台上所发现的可以转换回此处,以帮助你我(的研究),也因此我们不必去太空(进行研究)了。然而我们基本上是在揭示病原体感染我们身体时可以做出的反应,我们并没有发现其他方式。因此,现在,我们已经开发出包含人体组织结构的三维肠道培养物。它们具有在肠上皮细胞中发现的多种细胞类型。他们有丰富的(肠)黏液。它们有顶部和底部。他们被很好的两极分化。当我们将免疫细胞放入其中时,它们可以显示出更多体内对感染所作出的反应。因此,我们的目标是使这些肠道模型越来越像体内的物质。我们既从研究细菌病原体如何响应生理流体剪切力的角度出发,又利用这些相同的力在体外开发出更多的有缺陷的患者人体组织模型,以研究宿主病原体的相互作用。这可能会致使但我并不保证一定致使研制出疫苗或其他新型疗法来帮助人们。

Peter [15:50] 

这是一个非常有趣的观点。 我想我将需要些时间来消化一下。 我想知道,您认为未来十年太空科学领域和微生物学领域的发展方向是什么呢? 从现在开始十年后您想看到实验室发展到什么程度呢?

Dr. Nickerson [16:06]

这又是个很好的问题。而我敢肯定,不同的人给你的回答是不同的。最终,我认为最重要的任务之一就是摆脱动物测试。我们必须在实验室中这样做,因为我们始终无法感染人类而且没办法(直接在)人体中测试一切。我们必须有更好的更具预测性的替代模型。而我认为我们可以实现这一点。顺便说一句,许多课题组正在取得长足的进步,做着我们未曾谈论过的事情,利用细胞来发展人体外部的人体组织和器官,这些细胞将具有功能性并100%预测你对病原体的反应方式。尚无人能100%预测,但是我们在实验室中做到了。其他正在做此研究的实验室也为人类提供了越来越多的预测模型。对我来说,这是我们必须解决的主要问题之一,这些领域也正在朝着这个方向发展。但是,这需要生命科学家、工程师和物理学家的跨学科团队合作,而这就是现代科学的运作方式,这很棒。我们的团队,您的团队正在执行此操作,因为没有人可以成为懂得一切的专家。当你采取这些多学科的方法来解决此类问题时,我们看到的是-我们看到了以新的方法来更好地解决或帮助理解病原体感染人类时的作用。他们在必须感染的整个微生物组的背景下做什么?他们是如何用物理作用力做到这一点的?他们又是如何在健康和疾病中做到这一点?我们又将如何建立更好的人体模型、人体外部组织和器官模型来概括我们体内的每个生物、化学和物理因素呢?

Peter [17:50] 

我从您刚才提到的内容中概括出的一件事是发现如此关联密切的事物,并将其与人类健康联系在一起是不可思议的。 我对您在讲话中表现出的热情,您在对话中的热情感到敬畏。那么,我想知道,这种热情真的会激励您吗? 您觉得它是自然而然的吗? 还是,您必须真正等到关键时刻才有呢?

Dr. Nickerson [18:12]

我一直说,(要)绝对自然。如果我不是绝对喜欢自己所做的事,我会心跳加速。我对自己对科学学科和领域的承诺充满激情。它驱动了我所做的几乎所有事情。我很高兴在实验室工作的团队成员的内心深处也是这样的。那么,是的,我们住在实验室外,但我们喜欢睡觉和呼吸,因为我们喜欢它。你的思维中必须有那股热情。当你找到对的事物时,它会激励你早晨起床,你迫不及待地要想出下一步的方法。这一直是一个难题,需要解决。激情就在那里;我们以它为食,我们互相激励;我们以发现为生,因为归根结底,离开这个世界要比你在这里时好一些。如果有我们的发现,我们的任何工作、任何研究,都意味着可以得出更好或新颖的方法来对抗、治疗和预防传染性疾病。这就是我们正在学习的方法。

Peter [19:22] 

谢丽尔,我们的谈话有了非常振奋人心的结尾。 非常感谢您成为Gastronauts 播客的第一位客人。

Dr. Nickerson [19:29] 

我很荣幸,谢谢你们的邀请。

Peter [19:43] 

Nickerson博士给我们提出了很多建议来(让我们慢慢)消化,这是第一期的结束方式。 但真正让我领悟到的是接受不确定性与接受挑战的重要性。 我们永远不知道最终将要到哪里,或者世界如何看待我们的科学。 因此,找到您感兴趣的东西并为之奋斗。 非常感谢您的收听,我们下期再见。 有关我们更多的内容,您可以关注我们的Twitter @gutbrains,或访问我们的网站thinkgastronauts.com。没有我们在这里的优秀团队,就没有Gastronauts 播客。 梅勒迪斯·施梅尔(Meredith Schmehl)是我们的制作人和音乐作曲家。 Laura Rupprecht博士是我们的社交媒体经理。 特别要感谢Gastronauts的创始人:Bohórquez实验室的Diego Bohórquez博士。

The Gastronauts Podcast Season 1

Season 1 Transcripts

Episode 6: Inventing The Inventor (Nancy Allbritton, UNC) [中文]

Dr. Allbritton shares her thoughts on what makes a trainee successful, how she has used gizmos and gadgets to create a model of the human intestine, and how one becomes a successful company founder.

Episode 5: Trust Your Gut (Michel Neunlist, Nantes) [中文]

Dr. Neunlist talks about how the nerves in our gut are linked with Parkinson’s Disease as well as the importance of integrity in scientific research.

Episode 4: Illuminating The Path (Nick Spencer, Flinders) [中文]

Dr. Spencer talks about the nervous system of the gut, and provides insight into how technology has changed science as well as the importance of perseverance in science.

Episode 3: Debugging Our Memories (Mauro Costa-Mattioli, BCM) [中文]

Dr. Costa-Mattioli gives us his thoughts on memories and microbes, and advice on how to push forward into new scientific fields.

Episode 2: Making The Jump (Ian Wickersham, MIT) [中文]

Dr. Wickersham discusses his work on rabies virus to probe connections in the brain and how he forms collaborations with other researchers.

Episode 1: Embrace The No (Cheryl Nickerson, ASU) [中文]

Dr. Nickerson shares her other-worldly ideas of sending bacteria to space, the challenges she faced, and what motivates her to do the work she does.


Episode 6: Inventing The Inventor (Transcript)

Dr. Allbritton [0:01] 

It’s got some interesting flavor notes in it that I can’t quite put my finger on. It tastes like a kind of peppermint flavored chip or some mint flavored chip of some sort.

Peter [0:14] 

Alright, you can take off the blindfold now. So what you have in your hand is actually a coconut chip. I thought it would be neat because one of the efforts in your lab is a gut on a chip, so it was pretty low hanging fruit. And the other thing that I thought was neat was if you look at a coconut cut in half, and kind of looks like a gut!

Peter [0:45]

Hi, my name is Peter, and I’ll be your host for The Gastronauts Podcast! Here at Gastronauts, we are committed to understanding communication in the body and in particular, how our gut talks to our brain. We will be taking a deep dive into the mind and motivations behind leading scientists and their work and hope that by getting to know the individuals behind the research, we can learn how different scientists think and how they approach complex problems. So come join me as we explore our inner space on The Gastronauts Podcast!

Today, we have Dr. Nancy Allbritton, the Kenan Distinguished Professor of Chemistry at UNC, and the Chair of Biomedical Engineering at both UNC Chapel Hill and NC State University. A bit about Dr. Allbritton: she studied physics as an undergraduate at LSU, received her MD at Johns Hopkins and received her PhD in medical physics at MIT in the laboratory of Dr. Herman Eisen. She then went on to do a postdoc with Dr. Luber Stryer at Stanford, where she studied secondary messenger signaling. She’s been awarded numerous patents and is a scientific founder of four companies. I really want to pick your brain on the idea to go from research to establishing these companies. But I want to start by learning a little bit more about your work. From your web page, I found three major efforts: single cell enzymatic essays, a new method for analyzing and sorting cells through microrafts and these organ on a chip experiments- are these your lab’s current focuses and can you tell us a little bit more about each of these efforts in your lab?

Dr. Allbritton [2:43] 

Yeah, definitely. So those are the three major […] areas of the lab. And they seem like disconnected areas in many ways, but my lab builds gizmos and gadgets for a living, really small devices that are great for small scale sample handling, and for assays of single cells. So the first technology that we the lab started with, the idea was to measure enzymatic activity in single cells in parallel. You know, sequencing the genome has made a massive impact on science. And while all of these things are great, most of the time, what you really want to know is what’s the cells enzymatic activities are signaling behaviors, as opposed to just a list of the components. You know, you could have a list of your computer components, and maybe not know that it was a computer because a couple parts could be used to do something else. So the idea is that we could develop a technology that would have the potential to look at human samples from clinical samples, and measure signaling activity. So that’s about a third of the lab about another third of the lab, is our microarray-based sorting technology. And the idea for that technology came about when I was working with various biologists to come up with a better way for cell sorting. So we make this transparent array where the cells can just be plated down. It’s comprised of an array of little micro elements. And each element can be released on demand. So what you can essentially do is use any type of microscopy to screen the array, then have these computer algorithms or even some very simple things like for instance, rates of change, and go back and release those cells. So you can sort just 100 cells, or even 10 cells, instead of a million, which you would need, typically for flow cytometry.

Peter [4:37] 

Wow. And for those of us who are a little bit less familiar with flow cytometry, could you tell us a little bit about the technique and how it works?

Dr. Allbritton [4:44] 

Yeah, so it was an awesome technology and developed at Stanford quite some time ago by the Herzenbergs. And the idea is, you can take cells that have been detached from a surface, and then you can flow on through a very high-speed stream, and they’re interrogated with a laser-

Peter [5:00] 

Sounds intimidating.

Dr. Allbritton [5:03] 

It’s actually fun. And then as it goes by a computer makes a decision about […] a property, usually fluorescence, and we’re going to grab it and sort it or we’re going to let it go to waste. It’s a very high-speed sorting technology, but it has some, some real challenges. Typically, you need close to a million cells, there’s a lot of tubing and other regions of the device, and cells just get lost or disappear. So if you wanted to say, look for a one in a million cell or a one in a [100 million] cell, it’s difficult; it’s not one of its strong points. If you want a sort of very, very large number of cells quickly, though, it is quite excellent. And due to the fact that there’s high-speed flowing streams, there’s a lot of mechanical stresses that are applied to the cells. So a lot of delicate cells don’t survive the process, you get very, very high death rates-

Peter [5:59] 

Like a roller coaster ride, [you] go on, and you get torn apart from everyone else who was on that ride with you. And you’re certainly not going to be the same way when you come out afterwards.

Dr. Allbritton [6:08] 

Exactly, you get kind of all jumbled and mixed up. Again, a blockbuster technology that has some real strengths, but also some real weaknesses. So our technology is designed to have the exact opposite strengths and weaknesses: really, really great, almost no physical stresses or forces on the cells as they’re sorted. It’s never going to store it though millions and millions of cells, but it will sort very, very small numbers of cells very efficiently. And you can probably start up 100,000 or half a million cells reasonably well. And so each of these technologies was spun off into companies. And then our latest one, of course, is the organ on chip or the gut-on-a-chip system, both small and large intestine. And the whole idea there was to try and recapture the architecture and physiology of a living intestine all on a micro scale device. It’s not going to be as complex as a mouse, or a human, but it’s going to be a model system where you can tightly control all the variables. And in particular, what it will do is allow you to take human biopsy samples, and then rebuild a little miniaturized intestine. It’s very clear that our intestines […] have this extraordinary number of chemical and gas gradients, but understanding how these gradients impact the differentiated cells and control their behavior, and then the stem cells, especially in the human is pretty impossible right now. So our systems were designed to allow you to do that, to get different human disease models, see how they might behave differently from a normal person. You know, right now you use mice, but humans come in all different races, sexes, genotypes, and minorities, and that’s sort of wide open territory, but you can begin to […] look at how diverse populations respond by having bank tissues that you can then use to rebuild many different mini intestines on a micro device. The organoids for the intestines are actually essentially little mini-guts or mini-intestines. They have a lumen and a single layer of cells around the lumen. And they actually the cells, the differentiated cells as they die, go into the lumen. And over time, they’ll kind of open up and essentially poop out the dead cells, just like you would in a regular gut […] So it’s like the tube but it’s in a spherical shape. But they’re a little not quite right, the architecture isn’t quite right, the differentiated and the stem cells aren’t quite segregated, and the lumen of the gut or the interior is pretty inaccessible. So while it’s our breakthrough technology that […] I think will open the door to some amazing experiments by biologist and biomedical researchers, it still has some deficiencies. And our goal is to come in and build the next level, and create a tissue that actually has an accessible lumen just like the real gut does.

Peter [9:27] 

So, [that the organoid] will recapitulate everything exactly. And I think that was something that coming in as a younger scientist, I hadn’t realized the limitation of a lot of these systems that were done in a dish. I thought that we had the power to […] make the exact same things that was going on humans. And I realized that that is not the case. And this is a major progress forward in the sense that we are getting very close, we’re getting closer and closer to really mimicking what’s happening inside our body without having to go inside the body.

Dr. Allbritton [9:57] 

Right, exactly. And so now though, we can get human model systems and begin to do a lot of the screening on human systems. So you can now begin to use some of these systems to screen various human populations in people with different genetic backgrounds and make predictions. Okay, this group of people may do really well with this drug at this concentration. But in this group of people with this genotype, we’re going to need a tenfold lower concentration for the drug not to be toxic […] It’s now quite clear that our bacteria play a huge role in how we metabolize and uptake drugs, and they can turn drugs into toxic compounds, and for many drugs, [the bacteria] actually metabolize them into the active compound. So we can begin to think about understanding how we can manipulate the gut to make our drugs less toxic and more active.

Peter [10:54] 

You mentioned earlier that a lot of the projects or efforts in your lab have been spun out into companies. Could you tell us a little bit about your decision to found a company, the first company that you found was Protein Simple in 2000.

Dr. Allbritton [11:09]

Right, so I didn’t start out life thinking [I needed] to found companies, actually. I didn’t necessarily really feel that that was something I needed to do in academia. But what I discovered is, when you create a technology, if it’s a novel technology, it’s still viewed as high risk and immature. And so to go out and license that technology to a bigger company, it’s just too high risk. And it still needs a lot of investment in innovation to get from the prototype lab bench stage, to a marketable project. So what I discovered is, the only way my technologies would get out into the real world is if I started the companies that would build on them. So I had this technology, and my feeling was that if it was only limited to my lab, I wasn’t paying the taxpayer back. They had funded me to do all this innovative work, and it would just live and die in my lab. So the way to have real impact, at least if you’re a technology developer, is to have the technology go out into the real world and see other people using it. But much to my surprise, there was a huge gap. And companies just wouldn’t license your technology and start developing them. Right, I tried to license some of the first technologies and just hit brick walls. So I realized that, okay, if the technologies are going to get out into the real world and be useful to others, I need to do it, I need to found the company and I need to get it up and running. And actually, it was pretty exciting, because that’s a whole new skill set, right? And you can do great science that’s bad business. And you can have science, that’s okay. But it’s a great product. And so I actually came to enjoy it because you get to meet all sorts of different people with very different viewpoints. And the business world has a very different outlook and focus than academia. And I kind of like seeing that. But throughout all this time, I also realize that I’m not a business person, I should not pretend to be a business person. My job is to help found the company and be on the technology end. And so all of these companies have been partnerships with others. I think a characteristic of my career is always working in teams with other people. So the companies are always founded with a group of people, not just me as a founder. And we always try and pull in a business person pretty early, because there’s just a huge amount of work to go from technology feasibility to a functional company. And as an academic, I don’t have that skill set, but the business people do. And they can speak the lingo. And if we can work together as a productive team, we will do much more.

Peter [14:00] 

So it sounds like a really complementary skill set. You never felt the real push to ever leave science and go into venture capitalism or go into pharma, it was more so you realize you’re much more interested in passionate about being inventor than a salesperson, at the end of the day.

Dr. Allbritton [14:17] 

And I think that’s one of the coolest things. If you go to another lab, and you see your technology there, and they have no idea that’s your technology. And to me, that’s the ultimate mark of success for a tech lab is people using your technology. Recently for Cell Microsystems, I saw a Nature paper use the technology as a key piece of it. And it just said Cell Microsystems, and that’s pretty awesome.

Peter [14:44]

Do you have any advice for someone who is a young inventor, a new developer of a technology who is thinking about starting a company but not sure whether or not that is the right move for him or her; whether or not that is where he or she wants to see their lab perfect? Do you have any advice that you would give?

Dr. Allbritton [15:02] 

You know, it’s not for everybody, so does it get you excited? Are you willing to put in all that extra effort and time and get really excited about it. If you don’t, then it’s probably not your cup of tea, and you should spend your time doing something you get really excited about. The other thing I would say is, it’s really hard and a lot of work sometimes to start a company. So you just have to keep hammering away and staying motivated. You know, it’s like being a scientist: 95% of your experiments fail, and you have to learn to be motivated and just keep pounding away. And in the same way, starting a company is the same way. People will just often tell you what you need to do more of or why you can’t have any investment, blah, blah, blah. But you just keep hammering away and moving forward. So you have to believe in yourself. It’s hard work and believing in yourself. And being motivated, I think are the secrets. And I would say to anybody do something that gets you excited, because it’s easier to take the failures and the disappointment that are going to come no matter what you do in life. And if you’re still excited and you believe in it, you’re just going to be able to keep hammering away.

Peter [16:09]

Yeah, so it sounds like you really pushed yourself forward to not only be an investigator […] I was looking through a lot of your old work or your previous work where […] you won the Beckman Young Investigator Award on calcium signaling more recently in 2016. And 2017, you’ve been awarded on being an inventor. Has this kind of been transitioned in how you viewed yourself from an investigator on in your early stages to an inventor? Have you always thought of yourself as I am Dr. Nancy Allbritton and I am an inventor, or was there kind of a shift in that?

Dr. Allbritton [16:42] 

Yeah, […] when I was a kid, I used to work on my own car. And that was when you could actually work on your own cars and tune up the carburetors and all these other things. So I always like to build and design, you know, I used to build my own rabbit hutches, for example. So I always had that kind of bent where I like to tinker, and build and improve. So I’ve always been interested in building tools. And it’s always building a tool to solve a biological problem. And so that, I think, has been a hallmark. And even as I started my career as a professor, I was in a medical school. But even at that time, my lab was building technologies and tools to solve biological problems. And I like to think that I became smarter over time, because instead of me trying to figure out the right biology problems, over time, I began to focus more of my efforts on building the technologists and collaborating with others, rather than building the technologies and then also trying to solve the biology problems. Because I found that one, I can’t be an expert in everything. I can be really great at knowing all the engineering and analytical chemistry and physics, but trying to keep up with very fast-paced moving biology fields was going to be a struggle. And so I decided, I guess […] as I move forward [in my career] I realized what I was good at, and what I was less good at, and decided to focus more on the technology development, because I was quite clearly much better at that.

Peter [18:39] 

One of the questions that I was wondering how do you distinguish between the work you do in the laboratory and the work that is being done in these companies? Or is there kind of a distinction?

Dr. Allbritton [18:46] 

There’s actually a huge distinction. My lab is really good at coming up with new and novel ideas, and doing feasibility experiments and doing all the early stage work. But if you asked us to figure out how to make 1000 devices exactly the same, we would not be very good. Because we’re a small scale, we’re doing creative ideas and innovations. But our skill set isn’t such that we can figure out how to manufacture something that’s robust and reliable and the product is the same every time. And so if you think there’s a big gulf between demonstrating feasibility in the lab, and then getting a commercial product out. So my lab goes up to the demonstrating feasibility and utility. In my lab, we can fail. And we can fail a lot and keep going as long as we see succeed some of the time. But in a company, you need to succeed most of the time, and you need to serve the needs of a customer. And so I think the company does all of the innovation and creative thinking to get from our lab to what a customer needs, and make it reliable and robust and reproducible, and scalable. You can’t pay a massive sum per device, so how to make it manufactured at low costs. So there’s actually a very clean segregation between what the lab does and companies do. And it’s actually really good to have the companies because if people start to use our device, they’ll say, Nancy, can we have 100 of these little microarrays. And we’re like, oh, no, there’s no way graduate students in the lab can make 100 of these and send them out- one they’ll never graduate. And two, each one might be different from the next one that they make, because they’re being made by hand on a small scale. But for the company they’re easily able to serve those needs and purposes, as well as do some individual customization as long as they see a market. And then the company will also do a lot of automation innovation, which we may or may not do in the lab.

Peter [21:02] 

So the efforts in your lab are more broad horizon, seeing what’s out, developed techniques. And these companies, they’re really optimizing, refining. It’s nice to see that you are able to be involved in both: to see the entire process from start to finish, or from the inception of the idea to the customer.

Dr. Allbritton [21:21] 

Right, the company’s actually inform what we do in the lab. So you often see a lot of microdevices that while they’re great and elegant engineering, they’re never going to be a product, because they’re too complex and unreliable. And there’s too many moving parts. And biology is already complex enough. And so you can have a device with a lot of failure points. Simplicity is elegant simply is the way the best way to look at it. This, it’s really hard to design a simple device. But we try and head in that direction in the lab, because it means it’s going to be more usable by other people.

Peter [22:01]

So by working with these companies, you have simplicity in mind, you have an idea, if this isn’t usable-

Dr. Allbritton [22:07]

Then why am I doing it, and perhaps I’m wasting NIH’s money.

Peter [22:11] 

A lot of the skill set is […] the determination or dealing with failure between great science and being a […] founder of a company. But you also said there are great scientists who have failed products or great products that don’t have great science behind them. How would you optimize both of those?

Dr. Allbritton [22:27] 

Yeah, so you know, there’s all sorts of elegant technologies. And they’re used to answer fundamental questions, but they need a specialist in the lab that actually built the technology to use it. It’s so complex with so many moving parts, unless you have people in your lab that are spending all of their time keeping the equipment running or whatever; that technology is can be a breakthrough technology, but it’ll be a limited to a small scale effort. Whereas to have broader applicability. And to make it commercially viable, a lot of people have to want to buy it, there has to be profit, businesses are around to make profit. They’re not around necessarily solve science problems. And so there’s a real difference in the way you have to approach the two. And in science, […] in the lab, you want to solve a big problem. Even if it’s a technology that no one else will ever use. It’s in your lab, because it’s so complex. And that’s totally awesome. And then in the business world, the idea is to develop a technology that everyone can use that has no failure points, people can take off a shelf, figure out how to use it without becoming an expert. It’s like turning on your computer. If you have to learn how to program it, before you use it, it’ll be limited to computer scientists and that’s it. So for it to be a useful product and to be widespread, it’s got to be more turnkey and reliable, simple instructions, it’s got to fit into the workflow of people what people are already doing. So you know, when making a product, can you make it fit into the workflow of a biologist, make the form factor look simpler, make the process of using the technology have a look and feel similar to things they’re already doing. I’ll give you an example. Our first cell sorting technology, it used a laser, it was really quite an elegant technology. And we popped off these little devices, I thought it was an awesome technology. But it was very complex. And as we went around talking to business, people are like, you’ve got to lose that laser. Because it’s too complex, it’s going to be a very expensive tool and device. I don’t know how you’re going to manufacture that in a cheap form that’s going to be usable by a large number of people. And that was actually good advice. I was quite disappointed to hear that because I thought it was so awesome. But that kind of advice was really good. So my lab and I, we went back to the drawing board. We did complete design changes and then came up with a device. And you know, they’re […] somewhere around a penny apiece, you can break them. And it doesn’t cost any money. They’re easily replaceable. So it really just fit more into the look and flow.

Peter [25:28] 

That mentality of keeping it simple; Does it frame how you make your collaborations with others? How do you decide who to collaborate with?

Dr. Allbritton [25:35] 

Yeah, so we actually are collaborators in a way we look at them as our customers. So my lab is really great at building things and innovating and designing hardware micro-fabrication. But I wouldn’t say were the greatest biologists. And so the other thing we always want to do is make sure we’re building something that somebody wants. If you look at in the engineering world, they’re always lot of amazing devices that are looking for a problem to solve. And you talked to a biologist, and they’re like, so what, you know, elegant device with all sorts of bells and whistles, cool engineering, but why would anyone want to use that. So […] everything we do is a collaboration with potential end users. And we use their input and advice to drive what we do next. So they essentially tell us what’s needed. And then in some ways, we’re filling their order, if you will. If we listen to them carefully, we will understand what’s going to be useful to a broad community of people. And then we will design and tailor it. The other thing we like to do is we will make devices and we think they’re awesome. And then we give them to a biologist and they do things we did not realize they were going to do and we go. So yeah, they’ll come back and say, yeah, that worked. But this went wrong, that went wrong. And that informs us and then we’ll redesign, re-innovate, go through the whole design cycle, send it back to them. So we kind of work in this closed loop with all of our collaborators. And I think we end up with devices and tools that are much more usable and have immediate applications in end-users rather than us going out looking around and shopping for problems to try and find and use our devices far. So I tell the biologists and biomedical researchers, my job is to build a technology to enable you to do something you’ve never done before, and to make you famous. And if I make you famous, I fulfilled my goal, because I’ve created a really useful new technology that a lot of other people will want to use.

Peter [27:48] 

Yeah, one thing that just popped into my head was [on] how we present our information. A lot of times in research, we think about all the steps that could have gone wrong, and how we optimize these steps in order to get this system working. But if you think of it from kind of a company standpoint, it’s not so much, “oh, these are the things that could go wrong. These are all the things that you can do with it. This is why this is why it’s been optimized for you.” Right, having seen kind of both types of presentation styles are both ways of presenting the same product. Have you thought a lot about how researchers could be changing how they’re presenting their work? Or how they’re pitching their ideas?

Dr. Allbritton [28:26] 

Yeah, so that’s a good question. I think, you know, first of all, communication is everything in science. If you can’t communicate in a simple, clear and exciting way, your work is almost useless. Particularly, as time goes by, it’s very clear that we need to communicate to the public a lot better than what we’ve done. So making our science interpretable to a person’s everyday life. And so you can think of you know, the person on the street, how you show how your work is important into their life and can make their life better. But even as you go up in complexity, and you’re presenting your work to a scientist, how can you present your tools and technologies as not, gee, I got this great technology. But as you said, this is what you can do for you. And make it simple and clear and make the presentation style simple and clear. So I think that’s a skill set that we all need to work on in science, and to make sure we don’t disappear into jargon-land, which a lot of us tend to do, because it’s comfortable, we understand that. But it’s unfortunately, I think does science a disservice when one speaking to other scientists, but also speaking to the public.

Peter [29:41] 

Definitely, I value communication, I think it is important. One of the mantras that I follow is it’s important to be able to communicate effectively with everyone, right? Because if you’re speaking only in a way that you understand, no one else is really going to understand. So you’re not sharing the knowledge.

Dr. Allbritton [29:59] 

Exactly. And I think that you have to be able to recognize who you’re speaking to, and be adept at tailoring the content and level of your message for a different audience. So for example, you know, speaking to a gastroenterology group would be very different than speaking to a micro-fab group at a meeting. You know, I often go and give talks to high school students, which is a totally different style of presentation. Although the base concepts are the same, it has to be presented very differently and with a different style.

Peter [30:35] 

And an emphasis in your lab, I know you’ve mentioned is teamwork and mentorship, which kind of go hand in hand. And I was wondering, when you’re going from training the vast number of undergrads to grad students to postdocs, is there something that has encouraged you to maintain this role in education? And is there something that you’re looking for, in particular students when you’re accepting or deciding to mentor them?

Dr. Allbritton [30:57] 

In some ways, they need to have technical skills, I don’t care if they have the skill sets in my lab, I want them to be motivated. Often, it’s not the brightest people that succeed, it’s those that are willing to work hard, and those that are motivated, and those that are persistent. So I look for motivation, persistence, willing to work hard, ability to take constructive feedback, and not become defensive. If I look at the people that succeed the most, those are the qualities people have.

Peter [31:24] 

Is that regardless across the board, from someone who’s relatively new-

Dr. Allbritton [31:30] 

At all levels. Understanding that there’s no gimmicks or shortcuts to working hard, you know, working hard is what gets you there, you want students to understand that. And so my sense is that I like students that have those qualities. You want students that are a little adventurous, that will just try stuff and aren’t worried about failing. Because often I can’t approach a field with pre-conceptions. And I’ll tell my students, oh, that’s a really bad idea. I don’t think that’s going to work. Fortunately, they sometimes completely ignore me. And it’s like, “wow, what a brilliant idea. I’m so glad you didn’t listen to me.” So you also want people with a little bit of adventure, who like being ready to fall off that bicycle, you know, is a good thing, [people that are] just going out there and taking on new challenges and saying, I’m just going to try it and see what happens. And not saying well, I only do this, and this is what I do, because I do it well, but [people that are] willing to branch out and try different things.

Peter [32:33]

And on the flip side, these are skills that would be great for students, what are skills that you hope to nurture in students or trainees?

Dr. Allbriton [32:39]

Yeah, so I think communication verbal, I think written skills are extraordinarily important. I started my career probably without necessarily the best writing skills. So technical writing, having a clear, concise message in grant writing. I think most of us that are in science, at least engineers and chemists and physicists, we’re in those areas, because we don’t like to write. But realizing that still you’re going to have to learn to write and write and the better you write, the farther you will go in your career, even though it’s not your most necessarily favorite activity.

Peter [33:15] 

How do you go about improving your writing?

Dr. Allbritton [33:18] 

Yeah, for the students, you know, honestly, it’s hard work. There’s no gimmicks. The students in my lab, they have to write proposals for their research, I think I torture them to death, make them rewrite, and rewrite. And I think they think it’s pretty funny sometimes, because they get documents back from me, everything’s crossed out, but at the end, I think they develop sort of a camaraderie. Okay, we’re surviving Nancy’s editing. And so the idea is that through their career, we just iterate their papers, we edit their thesis, their edits, we edit their proposals to NIH. We edit and we just go round and round editing over and over. And you can begin to see them get better as they progress through the years. And people start out at different levels, some people are quite good when they start out. And so there’s not so much editing, but other people have a little bit more work to do. But the harder they work, they do better and going through this cycle. And then I think learning to work with others that aren’t like you- the lone wolf scientist, I think is pretty much a thing of the past. Teams of people work together, it’s quite clear will achieve far greater than someone working by themselves. If you look at all the breakthrough science these days, it’s teams of people from different nationalities, different backgrounds. So learning to be flexible, and work with others and tolerate others different working styles, I think is fundamentally critical for success in academia, government, industry, national labs, or even if you decide to be a teaching professional, the more you’re able to navigate and work as a team, the better off you’re going to be.

Peter [35:01] 

Yeah, oftentimes, it is challenging being that person who’s inserting themselves in a situation where everyone else has a groupthink mentality. Did you ever feel that as a woman entrepreneur in the biomedical sciences, that you had to face a lot of these challenges moving into kind of fields that have traditionally been dominated by men?

Dr. Allbritton [35:19] 

Definitely. And I’m old enough that there weren’t a lot of women, particularly in chemistry and physics. When I started my career, and things weren’t going right. I always think, how can I do better? You can say, well, it’s someone else’s fault. They didn’t treat me right, or they did this blah, blah, blah. But I tend to have a look at the world differently. And I think no matter who you are, you’re going to end up in situations where you’re not treated fairly, your age or sex or your race. And, to me at least through my career, it was always better to think how can I do better? Okay, if this is not a good line for me, for whatever reason, what direction can I take where, where I’ll see success, and try not to ruminate and get stuck in one area, but to say, “okay, let’s take a step back, and I’m going to go in a different direction. I’m going to try something else.” So I made some big changes in my career either, because I thought I want to do something, but I decided it was not a good idea, or ended up in a situation where it wasn’t quite right for something. And so the idea was that I always decided [to follow was] to take a step back and go in a different direction and push my goals. And I think that has served me well. So I kind of look at the world like that. And if you’re a little persistent, and you believe in yourself, and you’re highly motivated, you can just keep plugging along. And in the end, I come out ahead just from always thinking: okay, this is not working the way I’m doing it. And I just, I’ve got to figure it out myself and how to move forward and get advice from others, you know. When I started out my career, it was difficult to find anyone who looked like me in physics. And so it helped to be highly motivated and determined. But as my career went on, more and more people started to look like me. And that made life easier.

Peter [37:13] 

Yeah, so it sounds like, it’s not just tinkering with devices is tinkering with your mindset as well. Thinking about how we approach problems, not just from a device standpoint, but also from a fundamentally how do I think about this? And how is it affecting me? Because I was wondering, what’s next for Dr. Nancy? You have achieved so much, where do you see yourself going?

Dr. Allbritton [37:35] 

A lot of people have been asking me that. And I don’t have a great answer. Every 10 to 13 years, I’ve tried to reinvent myself. So I’m in a phase now where I’m working to reinvent myself. So I have a lot of directions, I’m kind of exploring and thinking about, and I don’t want to spill any secrets quite yet. But I also think, you know, to keep fresh and kind of on your toes, sometimes if you’re doing the same thing over and over, you begin to take things for granted. And that’s never good. So my sense is you kind of need to shake up your life every once in a while by just taking on a new adventure or taking on some new risks. And you know, different people have different time scales on which they do it. And my timescale has been like every 10 to 13 years. So I’m beginning to think about kind of what’s next. For Nancy Allbritton I’ve reached I’ve done a number of things, what are some of the big things I still haven’t done that I think that I could do? And you know, as you get older, you think, are there better ways I can contribute to the world other than just running a lab or starting a company? And what are the opportunities? And how can I have a bigger impact going forward? One thing that’s really good about getting older is your skill sets have expanded greatly and your ability to work with people and think about problems. At least I think now mine are considerably better. And I have more patience than I use to as a younger person. So you want to begin to think about how to use those skill sets, and just even begin to continue to broaden your impact. So I don’t have an answer for your yet but stay tuned.

Peter [39:12] 

That’s exciting. Thank you so much for agreeing to be on The Gastronauts Podcast.

Dr. Allbritton [39:16] 

Thank you for having me. It’s been fantastic to have a conversation.

Peter [39:32] 

Well, Dr. Nancy Allbritton really took us on an adventure, from a product idea to its execution and implementation. And along the way, we learned the importance of communication. Science is done in teams of varying expertise. And being able to tweak and tailor the way you convey information will help make your message that much more effective. So thank you all so much for listening, and we’ll see you on the next episode. For more of our content, you can follow us on Twitter @gutbrains, or visit our website at thinkgastronauts.com. The Gastronauts Podcast would be impossible without the incredible team that we have here. Meredith Schmehl is our producer and theme music composer. Dr. Laura Rupprecht is our social media manager. And special thanks to the founders of Gastronauts, Dr. Diego Bohórquez and the Bohórquez laboratory.

Episode 5: Trust Your Gut (Transcript)

Peter [0:00] 

You have it? All right, take a quick bite.

Dr. Neunlist [0:07] 

The food was clearly an apple. And the wine is red wine. I hope you gave me a French red wine.

Peter [0:17] There’s somewhat conflicting evidence on whether or not red wine is good or bad for Parkinson’s disease. We chose the apple for two reasons actually. First, because we saw that […] increasing fiber has been shown to help ameliorate Parkinson’s. But the other reason is that pesticides that are sometimes used in the growth of apples [are] actually a trigger environmental toxin that is associated with Parkinson’s. But I was wondering if you could use one word to describe how you were feeling when your eyes were closed. And when I was coming in with some food…

Dr. Neunlist [0:50]

I was anxious of what I would discover. But then I had the rewards of the sugar and the alcohol that’s contacted the anxiety

Peter [1:01] 

That’s good to hear.

Peter [1:13] 

Hi, my name is Peter, and I’ll be your host for The Gastronauts Podcast. Here at Gastronauts, we are committed to understanding communication in the body. And in particular, how our gut talks to our brain. We will be taking a deep dive into the mind and motivations of leading scientists and their work, and hope that by getting to know the individual behind the research, we can find out how scientists think and how we can build a better scientific community. So come join me as we explore our inner space on The Gastronauts Podcast.

Today, we are really fortunate to have Dr. Michel Neunlist speak with us. Dr. Neunlist did his PhD in cardiac electrophysiology, which is studies in the electrical activity on how the heart works, how it beats in Dr. Tung’s laboratory and Johns Hopkins and was awarded his PhD at the University of Louis Pasteur. He later went on to complete his postdoc in Dr. Sherman’s lab in Hanover, Germany, where he studied the entire nervous system, which is the system of nerves and supporting cells that controls our gut. Since completing his postdoc, he started his own lab and is currently the Director of Neurogastroenterology at the University of Nantes. So thank you for coming on the show. Dr. Neunlist, could you tell us a little bit more about the key functions of the enteric nervous system, and some of the efforts in your lab to study this?

Dr. Neunlist [3:03]

Thanks for your invitation to let me speak at this very interesting podcast session of Gastronauts. As you mentioned, the main focus of our laboratory is to study the enteric nervous system, what is commonly called as the second brain. And indeed, as you know, the gut is the second neurological organ, after the brain. And what we are studying is mainly how this nervous system that is integrated all along the gut wall, composed of about 200 million neurons, 1 billion glial cells in this nervous system is regulating major gut function, motility, barrier function. [We are interested in] how are so this nervous system is altered in various diseases, not only disease of the GI tract, but also diseases of the brain, neurological disorders, in particular, neurodegenerative disorders, such as Parkinson’s disease. And the last research axis that we’re developing is how to target this nervous system to restore organ function in disease condition.

Peter [4:25] 

That’s really interesting. It sounds like you have a lot of efforts that are going on in your lab. And I kind of want to break it down a little bit. The first thing […] that I want to ask about is, a lot of people may not be aware that the gut has- as many nerves you said 200 million neurons and then millions more glial cells; how does that compare to the number of neurons in the brain- is that more or less?

Dr. Neunlist [4:49] 

Of course, in terms of quantity, it’s much less. Quality is not always dependent on the number. But […] to give you an order of magnitude, it’s about 1000 times less nerve cells in the gut [compared to] the brain.

Peter [5:09] 

That’s really nice to have a visual representation of how many cells are part of this enteric nervous system. So it’s clear the enteric nervous system is essential for our day to day function for essentially life. You hinted a little bit earlier about some of the other efforts in neurodegenerative disorders that you are looking at. And I was wondering how the enteric nervous system plays a role in some of these neurodegenerative disorders like Parkinson’s or Alzheimer’s. And I was wondering what efforts you have done on that?

Dr. Neunlist [5:39] 

I think this is a very complicated question. And I think trying to prove the causal whole of the entire economic system in brain disorders is something that is still very speculative. But I think how we can integrate these two nervous system is that’s probably the affected by common mechanism. Because by definition, the two organs we consider the gut is a neurological organ.

Peter [6:06] 

So like the gut is a second brain?

Dr. Neunlist [6:08] 

Second brain in terms of quantity, but probably from an evolutionary point of view, it’s the first brain, the original brain […] because when you look at very primitive organs, like jellyfish, they have already neurons, they don’t have any brain on these animals, [and] they have already neurons within what is considered to gut. So to go back to the to the question, why is the nervous system affected in brain diseases in a large sense, not maybe only in genetic disease, but also maybe psychiatric diseases is probably because these disorders are in fact, associated with genetic defects, which all regulates neuronal function since they are co-expressed, both in the first brain and the second brain. They can induce GI comorbidity as well as a brain dysfunction. This is probably also the rationale why so often GI comorbidities observed in many neurological disorders, because they share common pathway, common origin.

Peter [7:19] 

Not many people are aware of the GI comorbidities or the GI issues that go along with the nervous issues. I think a lot of people when they think of Parkinson’s disease, they think of it as a movement disorder, kind of a little bit of the tremor, the unstable gait, but many patients with Parkinson’s often have constipation or diarrhea, is that correct?

Dr. Neunlist [7:40]  

Exactly […] What is also interesting to say is that these symptoms [or atleast] part of them can be considered as pre-symptomatic symptoms

Peter [7:49] 

That comes before the movement disorders.

Dr. Neunlist [7:51]

It comes before the movement disorders and there is this triad of pre-symptomatic symptoms, including sleep disorders, including anosmia or smell defects. […] and the third one is GI motility disorders such as constipation and dysphagia, which are the difficulties swallowing, and gastric emptying, slowing, which are considered as a frequent comorbidity that is pre-symptomatic.

Peter [8:30] 

These could be looked at kind of maybe warning signs of someone has two or three of the symptoms.

Dr. Neunlist [8:35] 

Exactly. So it’s not just one symptom, it’s not just because you’re constipated, that you are prone to develop Parkinson’s disease. But if you have sleep disorders, as well as constipation, then increased risk to develop Parkinson’s disease. So this has set the hypothesis that maybe if GI symptoms, presence prior developments of disease could originate within the gut. And probably, it’s still a very hot debate between pros and cons, because you could have GI symptoms and just because the systems is more sensitive to degenerative processes, and probably where the disease starts is very complex.

Peter [9:26] 

So you’re talking about kind of the GI or the gastrointestinal manifestations, whether they’re coming because the nervous system is more sensitive, or have these manifestations shown- is this chicken or egg, which one came first, right? The abnormalities within the GI nervous system versus the abnormalities in the central nervous system?

Dr. Neunlist [9:48] 

What is the driving hypothesis of not a pure brain origin, in Parkinson’s disease, but also more importantly, or degenerative diseases is that key molecules involved in the regulation of function for disease.

Peter [10:12] 

They all have misfolded proteins.

Dr. Neunlist [10:14]

Exactly. This mis-folding protein that can be used by probably a large spectrum of environmental factors. And effectively, this is one of the full diagnosis, the real diagnosis. And what is interesting is that access can only be done as a biopsy in post-mortem so the definitive diagnostic, Parkinson can only be done [after death].

Peter [10:37] 

And the reason it can only be done post mortem, is because we cannot grab that part of the brain and someone who is alive.

Dr. Neunlist [10:43] 

Exactly. So the idea is maybe you had to think about another organ, where we can do in a routine fashion. Biopsies result without being life threatening or with minimal risk.

Peter [10:57] 

You’re looking at a different organ where you can grab some tissue issues, where the person is still alive, is still alive and see if this is a diagnostic [tool].

Dr. Neunlist [11:06] 

Organs, which have neurons, we could use it as a [diagnostic tool] and what better than the gut that can fulfill this condition, meaning everybody […] has the opportunity or to undergo a biopsy, a colonoscopy. And the gut, as mentioned, has a nervous system. So this was a little bit the driving idea of looking at whether from a living patient, we could identify biopsies, identify the same normal v. pathological hallmark. So the idea supports that at least two organs are affected and whether treating the gut would improve treatment of brain function is something.

Peter [11:50] 

Is that something that you’re interested in? […] Is it known at this point? Or is it something that we need to continue to do research on?

Dr. Neunlist [11:57] 

Personally, I don’t really believe when patients have been diagnosed with Parkinson’s disease, you have a chance to free restore the disease, because you can slow the evolution of  […] disease progression, but there are some data suggesting that (and it’s an interesting, but still controversial study) showing that in patients that had appendectomy-

Peter [12:28] 

People who had their appendix taken out.

Dr. Neunlist [12:31] 

They have a significantly lower risk to develop [Parkinson’s] over the course of years. And what was even more interesting was that this observation lowered risk only was observed in patient living in the rural areas, but not impatient living in cities.

Peter [12:53] 

And there’s very different lifestyles and people who live in rural areas versus cities.

Dr. Neunlist [12:58] 

One of the hypothesis suggests that people (in cities) are more exposed to pesticides. For instance, farmers were exposed to pesticides develop higher risk of Parkinson disease. But again, this study is a controversial one… This is a study performed, of course, which could feed into good quality of medical studies, meaning you have […] 900,000 patients that were included over a long time, but you have other studies showing that there was no effects of appendectomy on the risk of Parkinson’s. And another one on showing that, in fact, it increases the risk.

Peter [13:44] 

The data is still a little muddy.

Dr. Neunlist [13:48] 

[…] And I’d probably point out to the fact that more research needed.

Peter [13:53] 

So it seems like Parkinson’s is kind of a combination of some genetic factors. And then certain environmental toxins or something that happens to affect the enteric nervous system.

Dr. Neunlist [14:03] 

And the brain and independently whether one is linked to the other is not known but affecting the two organs, of course, because of the function that will [be] responsible for, of course, for motor symptoms and GI dysfunction.

Peter [14:20] 

So understanding the interplay between the entire nervous system and the central nervous system, and how things can go wrong. And disease is somewhere where we have a lot of research to do.

Dr. Neunlist [14:31] 

And there is a lot of research to do especially to understand the mechanism of disease. And once we understand the mechanism of disease, we can propose an efficacious preventive treatment. This is mainly what is the goal is.

Peter [14:45] 

It’s challenging to do Parkinson’s research because we have to look at these environmental factors over time. And then there’s a certain time window where these environmental agents will have their most damaging effects. And getting the timing right now is just as important as understanding the entire progression. And I kind of wanted to take that to segway a little bit more so about your progression, as a scientist. I wanted to ask about your path. It’s being in the right place at the right time or having the right mentors at the right time. And I was wondering, could you tell us a little bit more about your training path. From the personal

Dr. Neunlist [15:20] 

From the personal point of view, I think you mentioned […] that encountering the right person at the right time is critical and crucial to develop your career. But overall, also you have to have and I think this is where a science of offers very much reward; you have to be passionate for science, and if you really want to do a career in science, you have to be curious. I mean, it’s like not easy, you have to keep your naivety, keep your motivation to discover to […] be really open minded. And you have also of course to be hard working. And I remember when I was doing my PhD in Hopkins, there was a flyer, where I saw a seagull, this is a builder that eats frogs. It had part of the frog in his mouth. And the frog was one of the arm was holding the neck of this bird in order to prevent it from swallowing it. And this is a little bit, the image of the scientist. As long as you don’t give up, you will always have hope and finding something. And if you give up, then you’ll be swallowed by the science. So it’s never give up. And this is the message of hope. I mean, this is a very critical because your hypotheses are not always [right] and your experiments don’t [always] work. But if you insist, insist there’s always a solution. I think it’s also message of optimism, you always have to be optimistic to go forward. And in science, there is one way is not the road is not the right one. And you have to go to another way in the end, the door will always open to success.

Peter [17:34] 

You mentioned briefly that maintaining an optimism maintaining a kind of a dedication to solving the science when something doesn’t go the right way, go another way. How do you know that this is not the right way to go? How do you know when to change directions?

Dr. Neunlist [17:49]  

This is the gut feeling, you know? That’s why we have nerves in the gut; that’s why we have the second brain.

Peter [17:57] 

As a graduate student, sometimes I’m thinking, I’ll do some experiments and they aren’t working out? Should I […] give up and move to a different project? Or should I continue to go on? Or and then how long should I continue on that process?

Dr. Neunlist [18:08] 

It depends […] I don’t like to give up. And you have to be confident in yourself that what you’re doing is the right thing. And if you don’t give up and you believe that what you’re doing is right. […] But often it’s your first ideas that are good ones. And again, the gut feeling. This is key: trust your gut and also trust, hear what your mentors are saying. I mean, that’s it.

Peter [18:36] 

You only have a few mentors in your life. And it’s important to develop those relationships with those mentors. You got your PhD from the University of the Louis Pasteur, but your scientific mentor at that time was Dr. Tung in Johns Hopkins. Is that correct? Could you tell me a little bit about that process about how you decided to go to Hopkins to do research?

Dr. Neunlist [18:56] 

This was not a gut feeling that drove me to Hopkins. But it was another type of feeling. meeting that I met someone. My girlfriend was American, so it was not a gut feeling. It was […] just life events. I mean, not everything is planned. So if you combine gut feeling with other type of heart feeling, then I chose Hopkins because of the reputation [of the] BME department in Hopkins, because I was a BME (biomedical engineer) […] and I tried. This is something you have to do, you have to try it. And then I wrote many letters. And then Dr. Tung [responded], and this is the huzzah; a good encounter at the right time. And when things are mature.

Peter [19:49]

How did you get interested in electrophysiology or in how electrical circuits regulate our body. I see that your passion, to my interpretation, is understanding how these circuits function.

Dr. Neunlist [20:02]

No, it’s understanding how biology works, how life is working, how organs are functioning, because this is basically also an engineering question. And what better and more complex machine for an engineer than understanding how the human body’s working, which is much more complex. So I think this is a little bit what drove me as an engineer to the world of biology. And as mentioned, then the opportunity was that I had to do this in the heart […] what’s kept me all along my career is looking at how electricity […] is involved in the […] biology of organs, the heart first and then the second, the gut because my definition as an neurological organ, bioelectricity places and recording functioning of the gut. And so this is a little bit [about my] path.

Peter [21:02] 

With your engineering background, and understanding the electricity and how circuits play a role in fundamental biology, was it kind of a natural segway from moving to the heart to studying the gut? Did you have any reservations? Were you thinking, Oh, you know, maybe the gut isn’t so similar to the heart?

Dr. Neunlist [21:19] 

No, because the link between the two was the methods. To measure electrical activity at that time, it was by microelectrodes. Then, of course, if you want to understand the activity of a neural circuit, it’s not just one neuron on at the time […], but it’s the global response of many neurons, that regulate. The advantage of optical sensing is that with optical measurements is that you can have a global measurement of electrical activity in the whole network. So it’s much closer to answer your question is how the network is altered in diseases […]So this is a little bit how the technology was used as a common path to ask a question to heart which was distinct from the question in the enteric nervous system and physiology.

Peter [22:12] 

So understanding the methods to understand the network is […] what you’ve used [to answer your questions]. You used it in the heart, and you saw there was applicability to the gut as well.

Dr. Neunlist [22:21]

Exactly. And then we’ll try to go further by integrating what was observed in terms of knowing the activity in terms of function, because the ultimate goal is to understand the function of the organ, whether motility or more a barrier function, which is more of interests to me.

Peter [22:43] 

What made it you have a seamless transition from studying cardiac tissue in the heart to gastro intestinal tissue in the gut, was the fact that you had this method, you had this technique that you could easily apply from one field to another. Being able to apply techniques to different fields is very powerful. But I also think it’s important to apply certain guidelines that you think are important for conducting science. Are there any of these principles that you instill in your mentees or people that you train? Are there any fundamental principles to approaching science that you like to share?

Dr. Neunlist [23:20] 

I mean, the most important aspect is to have a rigorous scientific approach in what you are doing. And [important for] science is also repeatability. I mean, you have to validate all the concepts; this is something that is crucial to study that I consider as a fundamental in any research in particular. It’s very basic principles I know. But this is the core structure of science, which is fundamental, especially in a world where science is declining very rapidly. It’s question very frequently [asked], and I think this is our only way to survive when we do our science. We also have to know it doesn’t mean that it’s right, because science is [going] to change, it [will] evolve. By the time you do science, it has to be running [appropriately].

Peter [24:28] 

So it’s essential to have good rigor or good dedication to your research. The reproducibility is something that you think is essential, something that you want to instill in others that you train; we want our science to be reproducible. I think there can be findings that are contrary to what we discover, but our experiments need to be reproduced. I think that’s really powerful. Because we live in a climate where news on certain scientific discoveries can be challenged very quickly. There has to be an understanding of the amount of effort, the amount of time that we put in each one of these discoveries, and to continue to instill that dedication in future scientists is something that we think is powerful.

Dr. Neunlist [25:10] 

I think this is fundamental, especially I think, where this credibility because science everywhere is also more and more driven by money. Especially in times of crisis where money is short, especially in this world. I think driven by money, it’s very important to keep your integrity.

Peter [25:29] 

Well, thank you so much Dr. Neunlist for being on our podcast.

Dr. Neunlist [25:31] 

Thank you very much was a pleasure for me to talk with you. Thanks.

Peter [25:45] 

Wow, I feel that’s a really important message to take home. At the beginning of your scientific journey, passion helps kickstart your research. But it is the integrity it is the rigor that helps your findings stay afloat and stand the test of time. I think it’s a lesson we’ve all heard before, but something definitely worth revisiting. How do we want our work and the work of our collaborators to be viewed years from now? Just think about it. Thank you so much for listening. And we’ll see you all on the next episode. For more of our content, you can follow us on Twitter @gutbrains, or visit our website at thinkgastronauts.com. The Gastronauts Podcast would be impossible without the incredible team that we have here. Meredith Schmehl is our producer and the music composer. Dr. Laura Rupprecht is our social media manager. And special thanks to the founders of Gastronauts: Dr. Diego Bohórquez and the Bohórquez laboratory.

Episode 4: Illuminating The Path (Transcript)

Dr. Spencer [0:00]

It’s very sweet. It’s very pleasing. There’s a drive to put more in my mouth. So it’s a pleasant food. I’m pretty confident I got an idea what at least part of it is.

Peter [0:12]

All right. What [do] you think it is?

Dr. Spencer [0:19]

I think I’m guessing this chocolate on the outside and there’s something soft on the inside, like honeycomb or something not quite sure what’s in the middle.

Peter [0:25]

Alright, you can take off the blindfold. Really accurate description. It’s a Tim Tam. So are Tim Tam’s actually popular in Australia? I know that here in the States, we always talk about, “Oh, yeah. Tim Tam’s: the cookie of Australia.”

Dr. Spencer [0:40]

That’s really funny. And they are quite popular. Yeah. Okay. That’s sentimental.

Peter [0:48] 

Great, thank you.

Peter [1:03]

Hi, my name is Peter and I’ll be your host for The Gastronauts Podcast. Here at Gastronauts we are committed to understanding communication in the body. And in particular, how our gut talks to our brain. We will be taking a deep dive into the mind and motivations behind leading scientists and their work, and hope that by getting to know the individual behind the research, we can learn how different scientists think and better understand the steps in the scientific process. So come join me as we explore our inner space on The Gastronauts Podcast.

This week, we have someone who has an exquisite understanding of the network of nerves that control our gut. Dr. Nick Spencer’s lab is working to specifically target these nerves to treat constipation and visceral or internal pain. He completed his PhD in neurophysiology at Monash University in Melbourne, Australia. He then traveled to the University of Nevada for his postdoc, where he studied the system of nerves that control the gut, and then continued this work after accepting a faculty position at Flinders University in Adelaide, Australia. Thanks for being on here with us today. Dr. Spencer,

Dr. Spencer [2:37] 

Thank you very much, Peter. It’s great to be here.

Peter [2:40] 

So one of the questions that I was wondering was, could you tell us a little bit about your current research and how you view it in the greater context of the neurobiology field and the gastroenterology field?

Dr. Spencer [2:52] 

Sure. Well, 20 years ago, when I finished my PhD, there was moderate interest in in the gut. People sort of perceived to be really an organ that absorbs nutrients, and expelled waste. But now as I’m sure you’ve seen, in the in the media, there’s a lot more attention and interest in the gut, not just for digestion, absorption, but bacteria in particular within the gut can have a major effect on our well-being and health. So many disciplines, for example, psychiatry and psychology, which would have never normally been interested in the gut are now paying tremendous interest in what we do. What we’re interested in is really how the nerves in the gut wall communicate with the brain and what are the mechanisms by which they’re activated.

Peter [3:42] 

Can you tell me a little bit about the techniques or the tools you use to study some of these nerves in the gut? Are they different from tools that people traditionally used to study they gut? Or could you tell us just in general, a little bit more about these tools?

Dr. Spencer [3:47] 

Sure. So technology is changing rapidly. Some of the things that we’re doing now were not, believe it or not, 20 years ago. Most of the techniques that we use were around, they include electrophysiology, where we can record the electrical signals from the nerves. That’s become refined, but no necessarily major breakthroughs in neurophysiology recordings [have occurred] per se. We use standard immunohistochemistry, where we can detect what chemicals are made within the nerve cells. That’s a relatively rudimentary technique. The new technologies that we use, one of which is called optogenetics, which is where we use light to stimulate cells. We can either excite cells like nerves, or we can inhibit them. And that’s a very, very exciting tool, which has only really been around in great strength, really the last sort of five to eight years.

So we use primarily immunohistochemistry, tracing techniques, optogenetics, electrophysiology, and the other major advance is been the development of transgenic animals, where we can manipulate the DNA in animals. For example, we can insert particular fluorescent markers into cells of interest, so we can see which cells in the in the animals light up and how they behave in the body.

Peter [5:21]

So it really sounds like you have a ton of really interesting technologies that are helping drive your research- from shining light into the gut to looking at specific proteins by labeling them with particular colors. Technology seems to be a huge motivating force in science in general. And I was wondering, if you were […] transported 30 or 40 years ago, how do you think your approach to science would be different?

Dr. Spencer [5:45]

Wow, that’s a good question, Peter. I’ve never been asked that and I haven’t really thought about the. I guess the caveat would probably have to say, before I answer that, is that 20, 30, 40 years ago, the questions would have been a lot different. Science, in general, is a lot harder now. It’s very, very exciting. We’re thrilled to be alive in this incredible era, where technology is developing at a phenomenal right. But questions are getting more difficult as things are getting out and more and more information is being uncovered. So I guess to answer your question, we would have had different questions back then. I mean, we were just talking at lunch […] DNA was only discovered at odd years ago, right? It’s extraordinary to think, you know, dinosaurs have been walking around for hundreds of millions of years. And we didn’t even know what DNA was in at this point.

Peter [6:37]

We’re hearing about CRISPR or other techniques to modify DNA.

Dr. Spencer [6:41]

That’s right. Absolutely, it’s phenomenal. Who would have ever thought we could take the DNA to make fluorescent markers in jellyfish and insert that foreign DNA into mice? And we wouldn’t have believed it, in answer to your question 20, 30, 40 years ago. So things have changed a lot; they’ve changed very rapidly, probably we’re back then we would have been restricted to relatively primitive techniques, like mechanical recordings and some basic electrophysiology.

Peter [7:10] 

So the questions, the type of questions that your lab would be asking would be completely different, is what you’re saying.

Dr. Spencer [7:15]

Yeah, pretty much. Very much.

Peter [7:17] 

Do you think that the questions would be simpler? I feel like when I think about scientific questions, oftentimes I think of them, and some of the simplest questions are still the hardest to answer. I think that the advent of […] these advancements in technology are helping us answer these simple questions, or do you think they’re moving us down the path of more specific targeted questions that are only a facet of a simple question?

Dr. Spencer [7:42] 

I think the answer would be both. I mean, as we uncover more information, we’re also unlocking more questions. So you’re right. I agree that sometimes the simplest questions are the ones we don’t know and haven’t yet- not necessarily haven’t yet addressed, but haven’t been able to get it answer to. Hardly because the technology might not have been there. One of the things we probably need to think about is that mammals like us adapt. So when we, for example, mutate a gene in a mouse, the animal changes its behavior acutely. But after time, it can often end up back the way it started. We use this word compensation. So if you if you deleted gene from birth, eventually, the animal may end up, may, not always, end up very similar to the way it started. So technology has got around that, for example, by being able to acutely, instantaneously delete a segment of DNA, and then see the effects in that same animal immediately after it. So you’ve got a good control reference. And that’s been very, very helpful to address some of the questions.

Peter  [8:53

I think that was interesting as a point of reference, in the sense that all these questions have been some related to time. And when we make […] a transgenic mouse, or when we modify it, we have to look at it immediately after because there is compensation that occurs in the long term. I touched a little bit upon CRISPR and gene editing. And we don’t really know enough about the technology to really implement that in humans at this time, because we don’t know what compensation will come about. And I think it’s, it’s interesting, and it’s powerful to know that these technologies that we have, they won’t fully be understood unless we take a look at them over a long period of time. And I wanted to touch a little bit on the optogenetics tool where you shine a light to turn on or open or close the channel, which will activate a particular cell or turn off a particular cell. How did you get to the idea of shining a light where they’re typically really isn’t light in the gut?

Dr. Spencer [9:52] 

That’s a good point. This certainly isn’t; there shouldn’t be. So the gut is part of what we call the peripheral nervous system. And the brain and spinal cord is part of what we call the central nervous system. As you know, and in general, probably more people are working on the central nervous system than the peripheral nervous system. So to cut a long story short, we’ve adopted technology from the greater mass of people that are studying the central nervous system and have successfully shown optogenetics works in the brain and spinal cord. And then we realized, look, there’s not much going on in the internal organs in the periphery. And the gut sets up beautifully for optogenetics, because it’s the only internal organ in the body with its own intrinsic nervous system. In other words, it’s got neurons, not just nerve endings, but actually the nerve cell bodies with the nucleus inside the gut. We call it the enteric nervous system. And what that means is that we can use optogenetics easily in the gut, to express the light sensitive channels which you were talking about and to manipulate the gut function.

Peter  [11:04]

And what kind of physiological or medical problems do you think this could solve by manipulating these nerves that are specific to the gut and aren’t really anywhere else in the periphery?

Dr. Spencer  [11:14] 

Yeah, that’s a good question. So there’s a number of potential avenues you could use the technology for. As you know, there’s a lot of diseases of the gut. Now, we don’t particularly work directly on disease, we’re usually trying to understand how the gut works on its own in a healthy state. The simplest answer to the question is that one of the big problems in the community is chronic or idiopathic constipation, where patients usually unfortunately, are restricted to laxatives. Now, there are some drugs on the market, which can stimulate the nervous system and the gut. But because receptors are usually expressed in multiple organs, when you take those same drugs that stimulate the nerves in the gut, it also stimulates nerves in other parts of the body. They’re not just specific to the gut nervous system. The beauty about optogenetics is that you can express the light sensitive protein, so make the channels the ion channels that respond to light, just in particular populations of neurons; just in the gut, which means that you can shine particular colors of light, in this case, blue light, which would excite the excitatory neurons, in our case, in the gut wall, right, causing the gut to contract and expel content without any drugs.

Peter [12:36] 

Do you think this is a potential application for humans? Are we able to shine a light in humans and eventually treat constipation?

Dr. Spencer [12:44] 

That’s a good question. So with the number of new techniques, there’s usually pros, and then there’s some cons. There’s some very, very clear advantages of using the genetics. And there’s some clear disadvantages. The big advantages that could stimulate just the gut to cause the muscle cells to contract to lead to an increase in the expulsion of content. In other words, improve transit. So the advantages are one is that the nerves in the gut would be activated instantaneously. You wouldn’t need to consume orally any drugs; it doesn’t have to get absorbed into the bloodstream, and wouldn’t be acting on all of the other organs non-specifically. And it’s a very potent way to just stimulate particular types of neurons, for example, the excitatory neurons in the gut, the negatives would be that you would need to incorporate the light sensitive DNA from the algae originally into the neurons. Now, that sounds a little bit like science fiction, but believe it or not, the notion of having a harmless virus in human has been approved and is on the market. But the question would then be is, well, what would happen if you shine the light onto the gut for long periods of time. There is some evidence that long periods of exposure might not be helpful. And you know, the other thing is that you would need to incorporate internally through the gut wall, the light source. Yeah, so usually, you would need to surgically implant miniature light emitting diodes onto the gut. Now, we’ve done that in mice, and it works. Conceptually, there’s no reason why that could not work in larger mammals. You would just need to make sure that you get enough neurons in the entire nervous system making the light sensitive channels.

Peter [14:42] 

Wow, that really does sound a little bit like science fiction. I think it’d be hard to convince someone right now, maybe whether or not to get a light emitting diode placed in their gut. But maybe if the constipation gets so bad, people are willing to try a lot of things. I’ve seen it in the clinic, [in] a lot of patients- it’s a really devastating problem. That’s one of their major concerns, right? They’ll come in with cancer, or inflammatory bowel disease, or any disease of the gut, and one of the major symptoms is that they have is abdominal pain due to constipation. I want to take a little bit of a step away from the science in particular and ask a little bit about your path. I wonder if you have any advice to graduate students? Or if you reflect a little bit about your time as a graduate student? How did you get the idea to go into this field to chase after a field that is rapidly evolving?

Dr. Spencer [15:19] 

Hmm, good question. I think the most important thing is that you pursue something that you’re interested in. Now, if you’ve come from an undergraduate background, and you have an interest in a field, my view is to pursue your interest. I’ve seen some people go into fields that they’re not really interested in just because there’s more money, or there’s, you know, some other side effects. And then, and then after a few years, they get quite unhappy. So I think the most important thing is follow a field that you’re interested in. And in terms of graduate school, I knew that I was interested in the nervous system and how these nerves were talking to each other, and how are they functioning, I couldn’t believe that you could remove a segment of gut from a mammal, and it would still work, even though it was no longer connected to the brain or spinal cord.

Peter [16:26] 

So the gut, by itself taken out of the mouse or whatever animal- how long does that last for?

Dr. Spencer [16:32] 

So we believe it or not we have taken the whole colon on out of humans with disease, and mice, rats, pigs, guinea pigs, and they will live for anywhere up to sort of 10 to 12 hours, you could keep something alive as long as it’s got some oxygen in the solution.

Peter [16:50] 

Wow, so that that’s super cool. And I’m assuming that drew you towards the gut.

Dr. Spencer  16:54 

It did, it was the if you can think of the gut a little bit like the heart, he took the heart handles still keep beating, there’s an intrinsic pacemaker. Well, there’s also pacemaker cells in the gut. And they’ve been on the recently last decade or so been identified. So the nerves within the gut wall can also behave in a rhythmic pacemaker top fashion. And I was really interested in how we could speed that frequency up or slow it down. It’s taken a while, but we’ve made some really pleasing progress. And it’s been extremely rewarding. So getting back to your other question, I think the reward and excitement for unlocking previously unknown questions is immensely powerful. And no salary can substitute the satisfaction for that.

Peter [17:44] 

Yeah. And I think that is a recurring theme that I see here- it’s the drive for answering a question that nobody else has the answer to, so thank you for sharing that with us. The other thing I wanted to ask was, we’ve talked a lot about the development of technology and how things have happened over time. And I think it’s important for us, as scientists, to recognize how the field has changed and some of the giants who came before us and the research that they did. I was wondering, is there a particular scientist, or is there a particular group, that you found truly inspirational or motivating your work or having a large influence on your work today?

Dr. Spencer [18:21] 

Yeah, that’s a good question. Yes, that definitely is there’s a number of people and groups, I think probably one of the most moving stories that I’ve the most influential for me was, ironically, an Australian guy. This person, Robin Warren, from Adelaide, is the only winner of the Nobel Prize for the gut. And what he discovered was that bacteria can actually live in the stomach. It wasn’t so much the discovery itself that fascinated me and inspired me it was the way the discovery was made. Because for at least two or maybe more decades, nobody believed him. In 2005, he got a phone call, that he had won the Nobel Prize. And I think the fact that he had an unwavering tenacity, and an incredible ability to persist, and not give up is extraordinarily inspiring.

Peter [19:43] 

Wow, that is a really inspirational story. I think we talk a lot about genius, right? We think that there’s genius, and there’s hard work. And we think, oh, you know, I can’t emulate that, because someone just has naturally more talent than me. But hard work is something that we think we can if we put more effort, and we can achieve this and we can persist. But being able to persist when everyone else is telling you. It’s not right is genius in and of itself.

Dr. Spencer [20:09] 

Absolutely.

Peter [20:11] 

And one other thing I wanted to ask was a little bit about your transition from making the decision to come to the United States to do a postdoc, and then making that decision to go back to Australia to being a PI, being an independent investigator, It’s certainly a risky decision to go back and forth and leave your country. Could you just tell me a little bit more about what was going through your head and any advice you would give to someone who is having kind of a similar decision-making process.

Dr. Spencer [20:37]

This is a really important question. So after nine years as a postdoc in a good institution with a good group of people University in Nevada, I had been moderately productive, and learned a number of new skills. And then I got some funding and it became a bit awkward, because the person that I went over there to work with was just down the corridor. And I found a very, very hard to break away, scientifically. And there was a little bit of tension about whose ideas were what and should I be working on this, or isn’t that your project or my project. I had an excellent offer to stay for good. And I had funding in North America, and I gave it all up to a much less prosperous offer. In South Australia, the offer was a permanent position. But I had almost no funding to move into, and I was leaving all the equipment and stuff behind. The reason why I left is because at some point in time, you have to really demonstrate you are fully independent. And whenever you submit an application, if you’re in a big group where you know, it doesn’t matter to the best group in the world, if you submit an application, immediately think that it’s the group or the senior investigator of that lab that’s dropping the project. And you’re, you know, really just working in there. You really just need to be able to break out and show that you can work on your own, and you’re actually driving the projects. You’re the senior author on the papers. And that’s a cycle everybody has to get into some point, if they want to become an independent PI. It’s very, very difficult to break out once you stay permanently in the same postdoc.

Peter [22:22] 

Did you ever feel like it was challenging to have your own ideas? Or maybe when you were going through the process, is there a point in time in your graduate career where you’re like, “ah, this is mostly my ideas?” […] I’m a relatively young graduate students. So a lot of the times you go into a lab, this is a lot of the PI’s ideas, and you’re learning a ton. But is there a point where you reach that transition where you’re like, these are majority of my ideas? And is there a way to kind of expedite that process? Or is that something that just happens over time?

Dr. Spencer [22:50] 

It’s a good question is something that happens. So when you first walk into a a laboratory, I don’t think anybody on the earth would know what they’re about to do or what they’re about to find. And that’s the whole point of doing independent scientific endeavor; it is to answer questions that have not been resolved. So you shouldn’t be discouraged from not knowing anything, anybody, when they go into a laboratory, you should think of the question. And if it’s of interest to you, and you’re really passionate, stay with it. Over time, as you do more experiments and you do more reading, and you go to more meetings, and you meet more people, certain things- your ears will pick up. And you’ll realize that, or you’ll hear just obvious, you know, things that have not been resolved. What are the major questions that we don’t know? And then you think: well, is there anything I could do that could answer that that others can’t? Now often, the answer is no. Other people are already doing it, or they’re doing it better. But it’ll come to a point where you often know more about your project than your supervisor. And you will be sometimes generating the data fully independent and thinking about the experiments. And by the end of the graduate degree, you really should know more about your project than your supervisor, because you’ve done it. And ideas will come up. And you’ll think well, you know, why don’t we try this or that. And a lot of it is trial and error- some things will fail and some things will work. And it’s a matter of knocking on as many doors as you can and finding the ones that will open that give you a path to breaking away from the field and showing that you can drive the projects on your own.

Peter [24:35] 

Thank you for that advice, Dr. Spencer, and I really want to thank you for taking the time to talk with us about the importance of technology and scientific discovery, and how you’re able to establish your own research niche, so thank you again for your time.

Dr. Spencer [24:48] 

It’s a pleasure. Thanks for having me.

Peter [24:59]  

Placing it LEDs in the gut as a clinical intervention to treat constipation may come off as quite the unusual idea. But listening to Dr. Spencer’s passion for his work, and his stories on the importance of persisting and believing in yourself makes me think, why not? Especially if we can limit the side effects. Perhaps in 20 years, this type of intervention will become the norm or perhaps it will even seem outdated. Regardless, in this rapidly changing and contentious field of science, it is important to not only be adaptable, but remain steadfast in your beliefs. Because if you do not, there’s no way to convince anyone else. With that, I want to thank you all so much for listening. And for more of our content, you can follow us on Twitter at gutbrains or visit our website at thinkgastronauts.com. The astronauts podcast would be impossible without the incredible team that we have here. Meredith Schmehl is our producer and theme music composer. Dr. Laura Rupprecht is our social media manager and special thanks to the founders of Gastronauts, Dr. Diego Bohórquez and the Bohórquez laboratory.